NATIONAL COUNCIL OF EXAMINERS FOR ENGINEERING AND SURVEYING ${ }^{\circledR}$

Fundamentals of Engineering
 Supplied-Reference Handbook

Fourth Edition

National Council of Examiners for Engineering and Surveying ${ }^{\circledR}$
P.O. Box 1686

Clemson, SC 29633-1686
800-250-3196
www.ncees.org

Fundamentals of Engineering

Supplied-Reference Handbook

Fourth Edition
© 2000 by the National Council of Examiners for Engineering and Surveying ${ }^{\circledR}$
All rights reserved. First edition 1996
Fourth edition 2000

FOREWORD

During its August 1991 Annual Business Meeting, the National Council of Examiners for Engineering and Surveying (NCEES) voted to make the Fundamentals of Engineering (FE) examination an NCEES supplied-reference examination. Then during its August 1994 Annual Business Meeting, the NCEES voted to make the FE examination a discipline-specific examination. As a result of the 1994 vote, the FE examination was developed to test the lower-division subjects of a typical bachelor engineering degree program during the morning portion of the examination, and to test the upper-division subjects of a typical bachelor engineering degree program during the afternoon. The lower-division subjects refer to the first 90 semester credit hours (five semesters at 18 credit hours per semester) of engineering coursework. The upper-division subjects refer to the remainder of the engineering coursework.

Since engineers rely heavily on reference materials, the FE Supplied-Reference Handbook will be made available prior to the examination. The examinee may use this handbook while preparing for the examination. The handbook contains only reference formulas and tables; no example questions are included. Many commercially available books contain worked examples and sample questions. An examinee can also perform a self-test using one of the NCEES FE Sample Questions and Solutions books (a partial examination), which may be purchased by calling (800) 250-3196.

The examinee is not allowed to bring reference material into the examination room. Another copy of the FE Supplied-Reference Handbook will be made available to each examinee in the room. When the examinee departs the examination room, the FE SuppliedReference Handbook supplied in the room shall be returned to the examination proctors.

The FE Supplied-Reference Handbook has been prepared to support the FE examination process. The FE Supplied-Reference Handbook is not designed to assist in all parts of the FE examination. For example, some of the basic theories, conversions, formulas, and definitions that examinees are expected to know have not been included. The FE Supplied-Reference Handbook may not include some special material required for the solution of a particular question. In such a situation, the required special information will be included in the question statement.

DISCLAIMER: The NCEES in no event shall be liable for not providing reference material to support all the questions in the FE examination. In the interest of constant improvement, the NCEES reserves the right to revise and update the FE Supplied-Reference Handbook as it deems appropriate without informing interested parties. Each NCEES FE examination will be administered using the latest version of the FE Supplied-Reference Handbook.

So that this handbook can be reused, PLEASE, at the examination site, DO NOT WRITE IN THIS HANDBOOK.

TABLE OF CONTENTS

UNITS 1
CONVERSION FACTORS 2
MATHEMATICS 3
STATICS 22
DYNAMICS 24
MECHANICS OF MATERIALS 33
FLUID MECHANICS 38
THERMODYNAMICS 47
HEAT TRANSFER 58
TRANSPORT PHENOMENA 63
CHEMISTRY 64
MATERIALS SCIENCE/STRUCTURE OF MATTER 68
ELECTRIC CIRCUITS 72
COMPUTERS, MEASUREMENT, AND CONTROLS 76
ENGINEERING ECONOMICS 79
ETHICS 86
CHEMICAL ENGINEERING 88
CIVIL ENGINEERING 92
ELECTRICAL AND COMPUTER ENGINEERING 108
INDUSTRIAL ENGINEERING 115
MECHANICAL ENGINEERING 125
INDEX 136

UNITS

This handbook uses the metric system of units. Ultimately, the FE examination will be entirely metric. However, currently some of the problems use both metric and U.S. Customary System (USCS). In the USCS system of units, both force and mass are called pounds. Therefore, one must distinguish the pound-force (lbf) from the pound-mass (lbm).
The pound-force is that force which accelerates one pound-mass at $32.174 \mathrm{ft} / \mathrm{s}^{2}$. Thus, $1 \mathrm{lbf}=32.174 \mathrm{lbm}-\mathrm{ft} / \mathrm{s}^{2}$. The expression $32.174 \mathrm{lbm}-\mathrm{ft} /\left(\mathrm{lbf}-\mathrm{s}^{2}\right)$ is designated as g_{c} and is used to resolve expressions involving both mass and force expressed as pounds. For instance, in writing Newton's second law, the equation would be written as $F=m a / g_{\mathrm{c}}$, where F is in lbf , m in lbm , and a is in $\mathrm{ft} / \mathrm{s}^{2}$.
Similar expressions exist for other quantities. Kinetic Energy: $K E=m v^{2} / 2 g_{\mathrm{c}}$, with $K E$ in ($\mathrm{ft}-\mathrm{lbf}$); Potential Energy: $P E=m g h / g_{\mathrm{c}}$, with $P E$ in (ft-lbf); Fluid Pressure: $p=\rho g h / g_{\mathrm{c}}$, with p in $\left(\mathrm{lbf} / \mathrm{ft}^{2}\right)$; Specific Weight: $S W=\rho g / g_{\mathrm{c}}$, in $\left(\mathrm{lbf} / \mathrm{ft}^{3}\right)$; Shear Stress: $\tau=\left(\mu / g_{\mathrm{c}}\right)(d v / d y)$, with shear stress in $\left(\mathrm{lbf} / \mathrm{ft}^{2}\right)$. In all these examples, g_{c} should be regarded as a unit conversion factor. It is frequently not written explicitly in engineering equations. However, its use is required to produce a consistent set of units.
Note that the conversion factor $g_{\mathrm{c}}\left[\mathrm{lbm}-\mathrm{ft} /\left(\mathrm{lbf}-\mathrm{s}^{2}\right)\right]$ should not be confused with the local acceleration of gravity g, which has different units $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ and may be either its standard value $\left(9.807 \mathrm{~m} / \mathrm{s}^{2}\right)$ or some other local value.
All equations presented in this reference book are metric-based equations. If the problem is presented in USCS units, it may be necessary to use the constant g_{c} in the equation to have a consistent set of units.

METRIC PREFIXES			COMMONLY USED EQUIVALENTS
Multiple	Prefix	Symbol	
10^{-18}	atto	a	1 gallon of water weighs 8.34 lbf
10^{-15}	femto	f	1 cubic foot of water weighs 62.4 lbf
10^{-12}	pico	p	1 cubic foot of water weighs 62.4 lbf
10^{-9}	nano	n	1 cubic inch of mercury weighs 0.491 lbf
10^{-6}	micro	μ	The mass of one cubic meter of water is 1,000 kilograms
10^{-3}	milli	m	
10^{-2}	centi	c	TEMPERATURE CONVERSIONS
10^{-1}	deci	d	
10^{1}	deka	da	${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$
10^{2}	hecto	h	${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$
10^{3}	kilo	k	${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.69$
10^{6}	mega	M	K $={ }^{\circ} \mathrm{C}+273.15$
10^{9}	giga	G	$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
10^{12}	tera	T	
10^{15}	peta	P	
10^{18}	exa	E	

FUNDAMENTAL CONSTANTS

Quantity	
electron charge	
Faraday constant	metric
gas constant	metric
gas constant	USCS
gas constant	
gravitation - newtonian constant	metric
gravitation - newtonian constant	USCS
gravity acceleration (standard)	
gravity acceleration (standard)	
molar volume (ideal gas), $T=273.15 \mathrm{~K}, p=101.3 \mathrm{kPa}$	
speed of light in vacuum	

Symbol
e
\mathcal{F}
\bar{R}
\bar{R}
\bar{R}
G
G
g
g
V_{m}
c

Value
1.6022×10^{-19}
96,485
8,314
8.314

1,545
6.673×10^{-11}
6.673×10^{-11}
9.807
32.174

22,414
299,792,000

Units
C (coulombs) coulombs/(mol)
$\mathrm{J} /(\mathrm{kmol} \cdot \mathrm{K})$
$\mathrm{kPa} \cdot \mathrm{m}^{3} /(\mathrm{kmol} \cdot \mathrm{K})$
$\mathrm{ft}-\mathrm{lbf} /\left(\mathrm{lb}\right.$ mole- $\left.{ }^{\circ} \mathrm{R}\right)$
$\mathrm{m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$
$\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}$
$\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{ft} / \mathrm{s}^{2}$
L/kmol
m / s

CONVERSION FACTORS					
Multiply	By	To Obtain	Multiply	By	To Obtain
acre	43,560	square feet (ft^{2})	joule (J)	9.478×10^{-4}	Btu
ampere-hr (A-hr)	3,600	coulomb (C)	J	0.7376	$\mathrm{ft}-\mathrm{lbf}$
ångström (\AA)	1×10^{-10}	meter (m)	J	1	newton $\cdot \mathrm{m}(\mathrm{N} \cdot \mathrm{m})$
atmosphere (atm)	76.0	cm, mercury (Hg)	J/s	1	watt (W)
atm, std	29.92	in, mercury (Hg)			
atm, std	14.70	$\mathrm{lbf} / \mathrm{in}^{2}$ abs (psia)	kilogram (kg)	2.205	pound (lbm)
atm, std	33.90	ft , water	kgf	9.8066	newton (N)
atm, std	1.013×10^{5}	pascal (Pa)	kilometer (km)	3,281	feet (ft)
			$\mathrm{km} / \mathrm{hr}$	0.621	mph
bar	1×10^{5}	Pa	kilopascal (kPa)	0.145	$\mathrm{lbf} / \mathrm{in}^{2}$ (psi)
Btu	1,055	joule (J)	kilowatt (kW)	1.341	horsepower (hp)
Btu	2.928×10^{-4}	kilowatt-hr (kWh)	kW	3,413	Btu/hr
Btu	778	$\mathrm{ft}-\mathrm{lbf}$	kW	737.6	(ft-lbf)/sec
Btu/hr	3.930×10^{-4}	horsepower (hp)	kW-hour (kWh)	3,413	Btu
Btu/hr	0.293	watt (W)	kWh	1.341	hp-hr
Btu/hr	0.216	$\mathrm{ft}-\mathrm{lbf} / \mathrm{sec}$	kWh	3.6×10^{6}	joule (J)
			kip (K)	1,000	lbf
calorie (g-cal)	3.968×10^{-3}	Btu	K	4,448	newton (N)
cal	1.560×10^{-6}	hp-hr			
cal	4.186	joule (J)	liter (L)	61.02	in^{3}
$\mathrm{cal} / \mathrm{sec}$	4.186	watt (W)	L	0.264	gal (US Liq)
centimeter (cm)	3.281×10^{-2}	foot (ft)	L/second (L/s)	2.119	$\mathrm{ft}^{3} / \mathrm{min}(\mathrm{cfm})$
cm	0.394	inch (in)	L/s	15.85	gal (US)/min (gpm)
centipoise (cP)	0.001	pascal $\cdot \mathrm{sec}(\mathrm{Pa} \cdot \mathrm{s})$			
centistokes (cSt)	1×10^{-6}	$\mathrm{m}^{2} / \mathrm{sec}\left(\mathrm{m}^{2} / \mathrm{s}\right)$	meter (m)	3.281	feet (ft)
cubic foot (ft^{3})	7.481	gallon (gal)	m	1.094	yard
			$\mathrm{m} / \mathrm{second}(\mathrm{m} / \mathrm{s}$)	196.8	feet/min (ft/min)
electronvolt (eV)	1.602×10^{-19}	joule (J)	mile (statute)	5,280	feet (ft)
			mile (statute)	1.609	kilometer (km)
foot (ft)	30.48	cm	mile/hour (mph)	88.0	$\mathrm{ft} / \mathrm{min}(\mathrm{fpm})$
ft	0.3048	meter (m)	mph	1.609	km/h
ft -pound (ft-lbf)	1.285×10^{-3}	Btu	mm of Hg	1.316×10^{-3}	atm
$\mathrm{ft}-\mathrm{lbf}$	3.766×10^{-7}	kilowatt-hr (kWh)	mm of $\mathrm{H}_{2} \mathrm{O}$	9.678×10^{-5}	atm
$\mathrm{ft}-\mathrm{lbf}$	0.324	calorie (g-cal)			
$\mathrm{ft}-\mathrm{lbf}$	1.356	joule (J)	newton (N)	0.225	lbf
$\mathrm{ft}-\mathrm{lbf} / \mathrm{sec}$	1.818×10^{-3}	horsepower (hp)	$\mathrm{N} \cdot \mathrm{m}$	0.7376	$\mathrm{ft}-\mathrm{lbf}$
			$\mathrm{N} \cdot \mathrm{m}$	1	joule (J)
gallon (US Liq)	3.785	liter (L)			
gallon (US Liq)	0.134	ft^{3}	pascal (Pa)	9.869×10^{-6}	atmosphere (atm)
gamma (γ, Γ)	1×10^{-9}	tesla (T)	Pa	1	newton/m ${ }^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
gauss	1×10^{-4}	T	$\mathrm{Pa} \cdot \mathrm{sec}(\mathrm{Pa} \cdot \mathrm{s})$	10	poise (P)
gram (g)	2.205×10^{-3}	pound (lbm)	pound (lbm,avdp)	0.454	kilogram (kg)
			lbf	4.448	N
hectare	1×10^{4}	square meters (m^{2})	lbf -ft	1.356	$\mathrm{N} \cdot \mathrm{m}$
hectare	2.47104	acres	$\mathrm{lbf} / \mathrm{in}^{2}$ (psi)	0.068	atm
horsepower (hp)	42.4	Btu/min	psi	2.307	ft of $\mathrm{H}_{2} \mathrm{O}$
hp	745.7	watt (W)	psi	2.036	in of Hg
hp	33,000	(ft-lbf)/min	psi	6,895	Pa
hp	550	(ft-lbf)/sec			
hp-hr	2,544	Btu	radian	180/ π	degree
hp-hr	1.98×10^{6}	$\mathrm{ft}-\mathrm{lbf}$			
hp-hr	2.68×10^{6}	joule (J)	stokes	1×10^{-4}	$\mathrm{m}^{2} / \mathrm{s}$
inch (in)	2.540	centimeter (cm)	therm	1×10^{5}	Btu
in of Hg	0.0334	atm			
in of Hg	13.60	in of $\mathrm{H}_{2} \mathrm{O}$	watt (W)	3.413	Btu/hr
in of $\mathrm{H}_{2} \mathrm{O}$	0.0736	in of Hg	W	1.341×10^{-3}	horsepower (hp)
in of $\mathrm{H}_{2} \mathrm{O}$	0.0361	$\mathrm{lbf} / \mathrm{in}^{2}$ (psi)	W	1	joule/sec (J/s)
in of $\mathrm{H}_{2} \mathrm{O}$	0.002458	atm	weber $/ \mathrm{m}^{2}\left(\mathrm{~Wb} / \mathrm{m}^{2}\right)$	10,000	gauss

MATHEMATICS

STRAIGHT LINE

The general form of the equation is

$$
A x+B y+C=0
$$

The standard form of the equation is

$$
y=m x+b,
$$

which is also known as the slope-intercept form.
The point-slope form is

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)
\end{array}
$$

Given two points: slope,
The angle between lines with slopes m_{1} and m_{2} is

$$
\alpha=\arctan \left[\left(m_{2}-m_{1}\right) /\left(1+m_{2} \cdot m_{1}\right)\right]
$$

Two lines are perpendicular if

$$
m_{1}=-1 / m_{2}
$$

The distance between two points is

$$
d=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}
$$

QUADRATIC EQUATION

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& \text { Roots }=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

CONIC SECTIONS

$e=$ eccentricity $=\cos \theta /(\cos \phi)$
[Note: X^{\prime} and Y^{\prime}, in the following cases, are translated axes.]
Case 1. Parabola $\quad e=1$:

$$
(y-k)^{2}=2 p(x-h) \text {; Center at }(h, k)
$$

is the standard form of the equation. When $h=k=0$,
Focus: $(p / 2,0)$; Directrix: $x=-p / 2$

Case 2. Ellipse $\quad e<1$:
-

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 ; \quad \text { Center at }(h, k)
$$

is the standard form of the equation. When $h=k=0$,
Eccentricity: $e=\sqrt{1-\left(b^{2} / a^{2}\right)}=c / a$
$b=a \sqrt{1-e^{2}}$;
Focus: $(\pm a e, 0)$; Directrix: $x= \pm a / e$

Case 3. Hyperbola $\quad e>1$:

-

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 ; \quad \text { Center at }(h, k)
$$

is the standard form of the equation. When $h=k=0$,
Eccentricity: $e=\sqrt{1+\left(b^{2} / a^{2}\right)}=c / a$
$b=a \sqrt{e^{2}-1} ;$
Focus: $(\pm a e, 0) ;$ Directrix $x= \pm a / e$

- ©Brink, R.W., A First Year of College Mathematics, Copyright © 1937 by D. Appleton-Century Co., Inc. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

Case 4. Circle $\quad e=0$:

$$
(x-h)^{2}+(y-k)^{2}=r^{2} ; \quad \text { Center at }(h, k)
$$

is the general form of the equation with radius

$$
r=\sqrt{(x-h)^{2}+(y-k)^{2}}
$$

-

Length of the tangent from a point. Using the general form of the equation of a circle, the length of the tangent is found from

$$
t^{2}=\left(x^{\prime}-h\right)^{2}+\left(y^{\prime}-k\right)^{2}-r^{2}
$$

by substituting the coordinates of a point $P\left(x^{\prime}, y^{\prime}\right)$ and the coordinates of the center of the circle into the equation and computing.

Conic Section Equation

The general form of the conic section equation is

$$
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0
$$

where not both A and C are zero.
If $B^{2}-A C<0$, an ellipse is defined.
If $B^{2}-A C>0$, a hyperbola is defined.
If $B^{2}-A C=0$, the conic is a parabola.
If $A=C$ and $B=0$, a circle is defined.
If $A=B=C=0$, a straight line is defined.

$$
x^{2}+y^{2}+2 a x+2 b y+c=0
$$

is the normal form of the conic section equation, if that conic section has a principal axis parallel to a coordinate axis.

$$
h=-a ; k=-b
$$

$$
r=\sqrt{a^{2}+b^{2}-c}
$$

If $a^{2}+b^{2}-c$ is positive, a circle, center $(-a,-b)$.
If $a^{2}+b^{2}-c$ equals zero, a point at $(-a,-b)$.
If $a^{2}+b^{2}-c$ is negative, locus is imaginary.

QUADRIC SURFACE (SPHERE)

The general form of the equation is

$$
(x-h)^{2}+(y-k)^{2}+(z-m)^{2}=r^{2}
$$

with center at (h, k, m).
In a three-dimensional space, the distance between two points is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

LOGARITHMS

The logarithm of x to the Base b is defined by

$$
\log _{b}(x)=c, \text { where } \quad b^{c}=x
$$

Special definitions for $b=e$ or $b=10$ are:

$$
\begin{aligned}
& \ln x, \text { Base }=e \\
& \log x, \text { Base }=10
\end{aligned}
$$

To change from one Base to another:

$$
\log _{b} x=\left(\log _{a} x\right) /\left(\log _{a} b\right)
$$

e.g., $\ln x=\left(\log _{10} x\right) /\left(\log _{10} e\right)=2.302585\left(\log _{10} x\right)$

Identities

$$
\begin{aligned}
\log _{b} b^{n} & =n \\
\log x^{c} & =c \log x ; x^{c}=\operatorname{antilog}(c \log x) \\
\log x y & =\log x+\log y \\
\log _{b} b & =1 ; \log 1=0 \\
\log x / y & =\log x-\log y
\end{aligned}
$$

- Brink, R.W., A First Year of College Mathematics, Copyright © 1937 by D. AppletonCentury Co., Inc. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

TRIGONOMETRY

Trigonometric functions are defined using a right triangle.
$\sin \theta=y / r, \cos \theta=x / r$ $\tan \theta=y / x, \cot \theta=x / y$ $\csc \theta=r / y, \sec \theta=r / x$

x
Law of Sines $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ a

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Identities

$\csc \theta=1 / \sin \theta$
$\sec \theta=1 / \cos \theta$
$\tan \theta=\sin \theta / \cos \theta$
$\cot \theta=1 / \tan \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$\cot ^{2} \theta+1=\csc ^{2} \theta$
$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\sin 2 \alpha=2 \sin \alpha \cos \alpha$
$\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=1-2 \sin ^{2} \alpha=2 \cos ^{2} \alpha-1$
$\tan 2 \alpha=(2 \tan \alpha) /\left(1-\tan ^{2} \alpha\right)$
$\cot 2 \alpha=\left(\cot ^{2} \alpha-1\right) /(2 \cot \alpha)$
$\tan (\alpha+\beta)=(\tan \alpha+\tan \beta) /(1-\tan \alpha \tan \beta)$
$\cot (\alpha+\beta)=(\cot \alpha \cot \beta-1) /(\cot \alpha+\cot \beta)$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
$\tan (\alpha-\beta)=(\tan \alpha-\tan \beta) /(1+\tan \alpha \tan \beta)$
$\cot (\alpha-\beta)=(\cot \alpha \cot \beta+1) /(\cot \beta-\cot \alpha)$
$\sin (\alpha / 2)= \pm \sqrt{(1-\cos \alpha) / 2}$
$\cos (\alpha / 2)= \pm \sqrt{(1+\cos \alpha) / 2}$
$\tan (\alpha / 2)= \pm \sqrt{(1-\cos \alpha) /(1+\cos \alpha)}$
$\cot (\alpha / 2)= \pm \sqrt{(1+\cos \alpha) /(1-\cos \alpha)}$
$\sin \alpha \sin \beta=(1 / 2)[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$
$\cos \alpha \cos \beta=(1 / 2)[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$
$\sin \alpha \cos \beta=(1 / 2)[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$
$\sin \alpha+\sin \beta=2 \sin (1 / 2)(\alpha+\beta) \cos (1 / 2)(\alpha-\beta)$
$\sin \alpha-\sin \beta=2 \cos (1 / 2)(\alpha+\beta) \sin (1 / 2)(\alpha-\beta)$
$\cos \alpha+\cos \beta=2 \cos (1 / 2)(\alpha+\beta) \cos (1 / 2)(\alpha-\beta)$
$\cos \alpha-\cos \beta=-2 \sin (1 / 2)(\alpha+\beta) \sin (1 / 2)(\alpha-\beta)$

COMPLEX NUMBERS

Definition $i=\sqrt{-1}$

$$
\begin{aligned}
& (a+i b)+(c+i d)=(a+c)+i(b+d) \\
& (a+i b)-(c+i d)=(a-c)+i(b-d) \\
& (a+i b)(c+i d)=(a c-b d)+i(a d+b c) \\
& \frac{a+i b}{c+i d}=\frac{(a+i b)(c-i d)}{(c+i d)(c-i d)}=\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}} \\
& (a+i b)+(a-i b)=2 a \\
& (a+i b)-(a-i b)=2 i b \\
& (a+i b)(a-i b)=a^{2}+b^{2}
\end{aligned}
$$

Polar Coordinates

$$
\begin{aligned}
& x=r \cos \theta ; y=r \sin \theta ; \theta=\arctan (y / x) \\
& r=|x+i y|=\sqrt{x^{2}+y^{2}} \\
& x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta} \\
& {\left[r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\right]\left[r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)\right]=} \\
& \qquad r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
& \begin{array}{c}
(x+i y)^{n} \quad=[r(\cos \theta+i \sin \theta)]^{n} \\
\\
\quad=r^{n}(\cos n \theta+i \sin n \theta)
\end{array} \\
& \frac{r_{1}\left(\cos \theta+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
\end{aligned}
$$

Euler's Identity

$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{-i \theta}=\cos \theta-i \sin \theta$
$\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$

Roots

If k is any positive integer, any complex number (other than zero) has k distinct roots. The k roots of $r(\cos \theta+i \sin \theta)$ can be found by substituting successively $n=0,1,2, \ldots,(k-1)$ in the formula

$$
w=\sqrt[k]{r}\left[\cos \left(\frac{\theta}{k}+n \frac{360^{\circ}}{k}\right)+i \sin \left(\frac{\theta}{k}+n \frac{360^{\circ}}{k}\right)\right]
$$

MATRICES

A matrix is an ordered rectangular array of numbers with m rows and n columns. The element $a_{i j}$ refers to row i and column j.

Multiplication

If $\boldsymbol{A}=\left(a_{i k}\right)$ is an $m \times n$ matrix and $\boldsymbol{B}=\left(b_{k j}\right)$ is an $n \times s$ matrix, the matrix product $A B$ is an $m \times s$ matrix
$\boldsymbol{C}=\left(c_{i j}\right)=\left(\sum_{l=1}^{n} a_{i l} b_{l j}\right)$
where n is the common integer representing the number of columns of \boldsymbol{A} and the number of rows of $\boldsymbol{B}(l$ and $k=1,2, \ldots$, n).

Addition

If $\boldsymbol{A}=\left(a_{i j}\right)$ and $\boldsymbol{B}=\left(b_{i j}\right)$ are two matrices of the same size $m \times$ n, the $\operatorname{sum} \boldsymbol{A}+\boldsymbol{B}$ is the $m \times n$ matrix $\boldsymbol{C}=\left(c_{i j}\right)$ where $c_{i j}=a_{i j}+$ $b_{i j}$.

Identity

The matrix $\mathbf{I}=\left(a_{i j}\right)$ is a square $n \times n$ identity matrix where $a_{i i}$ $=1$ for $i=1,2, \ldots, n$ and $a_{i j}=0$ for $i \neq j$.

Transpose

The matrix \boldsymbol{B} is the transpose of the matrix \boldsymbol{A} if each entry $b_{j i}$ in \boldsymbol{B} is the same as the entry $a_{i j}$ in \boldsymbol{A} and conversely. In equation form, the transpose is $\boldsymbol{B}=\boldsymbol{A}^{T}$.

Inverse

The inverse \boldsymbol{B} of a square $n \times n$ matrix \boldsymbol{A} is
$\boldsymbol{B}=\boldsymbol{A}^{-1}=\frac{\operatorname{adj}(\boldsymbol{A})}{|\boldsymbol{A}|}$, where
$\operatorname{adj}(\boldsymbol{A})=$ adjoint of \boldsymbol{A} (obtained by replacing \boldsymbol{A}^{T} elements with their cofactors, see DETERMINANTS) and

$$
|\boldsymbol{A}|=\quad \text { determinant of } \boldsymbol{A}
$$

DETERMINANTS

A determinant of order n consists of n^{2} numbers, called the elements of the determinant, arranged in n rows and n columns and enclosed by two vertical lines. In any determinant, the minor of a given element is the determinant that remains after all of the elements are struck out that lie in the same row and in the same column as the given element. Consider an element which lies in the h th column and the k th row. The cofactor of this element is the value of the minor of the element (if $h+k$ is even), and it is the negative of the value of the minor of the element (if $h+k$ is odd).
If n is greater than 1 , the value of a determinant of order n is the sum of the n products formed by multiplying each element of some specified row (or column) by its cofactor. This sum is called the expansion of the determinant [according to the elements of the specified row (or column)]. For a secondorder determinant:

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

For a third-order determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-a_{2} b_{1} c_{3}-a_{1} b_{3} c_{2}$

Addition and subtraction:

$$
\begin{aligned}
& \mathbf{A}+\mathbf{B}=\left(a_{x}+b_{x}\right) \mathbf{i}+\left(a_{y}+b_{y}\right) \mathbf{j}+\left(a_{z}+b_{z}\right) \mathbf{k} \\
& \mathbf{A}-\mathbf{B}=\left(a_{x}-b_{x}\right) \mathbf{i}+\left(a_{y}-b_{y}\right) \mathbf{j}+\left(a_{z}-b_{z}\right) \mathbf{k}
\end{aligned}
$$

The dot product is a scalar product and represents the projection of \mathbf{B} onto \mathbf{A} times $|\mathbf{A}|$. It is given by

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
& =|\mathbf{A}||\mathbf{B}| \cos \theta=\mathbf{B} \cdot \mathbf{A}
\end{aligned}
$$

The cross product is a vector product of magnitude $|\mathbf{B}||\mathbf{A}|$ $\sin \theta$ which is perpendicular to the plane containing \mathbf{A} and \mathbf{B}. The product is

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|=-\mathbf{B} \times \mathbf{A}
$$

The sense of $\mathbf{A} \times \mathbf{B}$ is determined by the right-hand rule.

$$
\mathbf{A} \times \mathbf{B}=|\mathbf{A}||\mathbf{B}| \mathbf{n} \sin \theta, \text { where }
$$

$\mathbf{n}=$ unit vector perpendicular to the plane of \mathbf{A} and \mathbf{B}.

Gradient, Divergence, and Curl
$\nabla \phi=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \phi$
$\nabla \cdot \mathbf{V}=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \cdot\left(V_{1} \mathbf{i}+V_{2} \mathbf{j}+V_{3} \mathbf{k}\right)$
$\nabla \times \mathbf{V}=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \times\left(V_{1} \mathbf{i}+V_{2} \mathbf{j}+V_{3} \mathbf{k}\right)$
The Laplacian of a scalar function ϕ is
$\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$

Identities

$\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A} ; \mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$
$\mathbf{A} \cdot \mathbf{A}=|\mathbf{A}|^{2}$
$\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1$
$\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{0}$
If $\mathbf{A} \cdot \mathbf{B}=0$, then either $\mathbf{A}=0, \mathbf{B}=0$, or \mathbf{A} is perpendicular to \mathbf{B}.

$$
\begin{aligned}
& \mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A} \\
& \mathbf{A} \times(\mathbf{B}+\mathbf{C})=(\mathbf{A} \times \mathbf{B})+(\mathbf{A} \times \mathbf{C}) \\
& (\mathbf{B}+\mathbf{C}) \times \mathbf{A}=(\mathbf{B} \times \mathbf{A})+(\mathbf{C} \times \mathbf{A}) \\
& \mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0 \\
& \mathbf{i} \times \mathbf{j}=\mathbf{k}=-\mathbf{j} \times \mathbf{i} ; \mathbf{j} \times \mathbf{k}=\mathbf{i}=-\mathbf{k} \times \mathbf{j} \\
& \mathbf{k} \times \mathbf{i}=\mathbf{j}=-\mathbf{i} \times \mathbf{k}
\end{aligned}
$$

If $\mathbf{A} \times \mathbf{B}=0$, then either $\mathbf{A}=0, \mathbf{B}=0$, or \mathbf{A} is parallel to \mathbf{B}.

$$
\nabla^{2} \phi=\nabla \cdot(\nabla \phi)=(\nabla \cdot \nabla) \phi
$$

$$
\nabla \times \nabla \phi=0
$$

$$
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A})=0
$$

$$
\nabla \times(\nabla \times \boldsymbol{A})=\nabla(\nabla \cdot \boldsymbol{A})-\nabla^{2} \boldsymbol{A}
$$

PROGRESSIONS AND SERIES

Arithmetic Progression

To determine whether a given finite sequence of numbers is an arithmetic progression, subtract each number from the following number. If the differences are equal, the series is arithmetic.

1. The first term is a.
2. The common difference is d.
3. The number of terms is n.
4. The last or nth term is l.
5. The sum of n terms is S.

$$
\begin{aligned}
& l=a+(n-1) d \\
& S=n(a+l) / 2=n[2 a+(n-1) d] / 2
\end{aligned}
$$

Geometric Progression

To determine whether a given finite sequence is a geometric progression (G.P.), divide each number after the first by the preceding number. If the quotients are equal, the series is geometric.

1. The first term is a.
2. The common ratio is r.
3. The number of terms is n.
4. The last or nth term is l.
5. The sum of n terms is S.

$$
\begin{aligned}
& \qquad \begin{array}{l}
l=a r^{n-1} \\
S=a\left(1-r^{n}\right) /(1-r) ; r \neq 1 \\
S \\
=(a-r l) /(1-r) ; r \neq 1 \\
\operatorname{limit}_{n \rightarrow \infty}^{n \rightarrow \infty} S_{n}
\end{array}=a /(1-r) ; \quad r<1 \\
& \text { A G.P. converges if }|r|<1 \text { and it diverges if }|r| \geq 1 .
\end{aligned}
$$

Properties of Series

$$
\begin{aligned}
& \sum_{i=1}^{n} c=n c ; \quad c=\mathrm{constant} \\
& \sum_{i=1}^{n} c x_{i}=c \sum_{i=1}^{n} x_{i} \\
& \sum_{i=1}^{n}\left(x_{i}+y_{i}-z_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} z_{i} \\
& \sum_{x=1}^{n} x=\left(n+n^{2}\right) / 2
\end{aligned}
$$

1. A power series in x, or in $x-a$, which is convergent in the interval $-1<x<1$ (or $-1<x-a<1$), defines a function of x which is continuous for all values of x within the interval and is said to represent the function in that interval.
2. A power series may be differentiated term by term, and the resulting series has the same interval of convergence as the original series (except possibly at the end points of the interval).
3. A power series may be integrated term by term provided the limits of integration are within the interval of convergence of the series.
4. Two power series may be added, subtracted, or multiplied, and the resulting series in each case is convergent, at least, in the interval common to the two series.
5. Using the process of long division (as for polynomials), two power series may be divided one by the other.

Taylor's Series

$$
\begin{array}{r}
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\ldots
\end{array}
$$

is called Taylor's series, and the function $f(x)$ is said to be expanded about the point a in a Taylor's series.
If $a=0$, the Taylor's series equation becomes a Maclaurin's series.

PROBABILITY AND STATISTICS

Permutations and Combinations

A permutation is a particular sequence of a given set of objects. A combination is the set itself without reference to order.

1. The number of different permutations of n distinct objects taken r at a time is

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

2. The number of different combinations of n distinct objects taken r at a time is
w $C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{[r!(n-r)!]}$
3. The number of different permutations of n objects taken n at a time, given that n_{i} are of type i,
where $i=1,2, \ldots, k$ and $\Sigma n_{i}=n$, is

$$
P\left(n ; n_{1}, n_{2}, \ldots n_{k}\right)=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Laws of Probability

Property 1. General Character of Probability

The probability $P(E)$ of an event E is a real number in the range of 0 to 1 . The probability of an impossible event is 0 and that of an event certain to occur is 1 .

Property 2. Law of Total Probability

$$
P(A+B)=P(A)+P(B)-P(A, B), \text { where }
$$

$P(A+B)=$ the probability that either A or B occur alone or that both occur together,
$P(A)=$ the probability that A occurs,
$P(B) \quad=\quad$ the probability that B occurs, and
$P(A, B)=$ the probability that both A and B occur simultaneously.

Property 3. Law of Compound or Joint Probability If neither $P(A)$ nor $P(B)$ is zero,

$$
P(A, B)=P(A) P(B \mid A)=P(B) P(A \mid B), \text { where }
$$

$P(B \mid A)=$ the probability that B occurs given the fact that A has occurred, and
$P(A \mid B)=$ the probability that A occurs given the fact that B has occurred.

If either $P(A)$ or $P(B)$ is zero, then $P(A, B)=0$.

Probability Functions

A random variable x has a probability associated with each of its values. The probability is termed a discrete probability if x can assume only the discrete values

$$
x=X_{1}, X_{2}, \ldots, X_{i}, \ldots, X_{N}
$$

The discrete probability of the event $X=x_{i}$ occurring is defined as $P\left(X_{i}\right)$.

Probability Density Functions

If x is continuous, then the probability density function $f(x)$ is defined so that

$$
\int_{x_{1}}^{x_{2}} f(x) d x=\text { the probability that } x \text { lies between } x_{1} \text { and } x_{2}
$$

The probability is determined by defining the equation for f (x) and integrating between the values of x required.

Probability Distribution Functions

The probability distribution function $F\left(X_{n}\right)$ of the discrete probability function $P\left(X_{i}\right)$ is defined by

$$
F\left(X_{n}\right)=\sum_{k=1}^{n} P\left(X_{k}\right)=P\left(X_{i} \leq X_{n}\right)
$$

When x is continuous, the probability distribution function $F(x)$ is defined by

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

which implies that $F(a)$ is the probability that $x \leq a$.
The expected value $g(x)$ of any function is defined as

$$
E\{g(x)\}=\int_{-\infty}^{x} g(t) f(t) d t
$$

BINOMIAL DISTRIBUTION

$P(x)$ is the probability that x will occur in n trials. If $p=$ probability of success and $q=$ probability of failure $=1-p$, then

$$
P(x)=C(n, x) p^{x} q^{n-x}=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}
$$

where

$$
\begin{array}{ll}
x & =0,1,2, \ldots, n \\
C(n, x) & =\text { the number of combinations, and } \\
n, p & =\text { parameters }
\end{array}
$$

NORMAL DISTRIBUTION (Gaussian Distribution)

This is a unimodal distribution, the mode being $x=\mu$, with two points of inflection (each located at a distance σ to either side of the mode). The averages of n observations tend to become normally distributed as n increases. The variate x is said to be normally distributed if its density function $f(x)$ is given by an expression of the form

$$
\mathrm{f}(\mathrm{x})=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(\mathrm{x}-\mu) / 2 \sigma^{2}}, \quad \text { where }
$$

$\mu=$ the population mean,
$\sigma=$ the standard deviation of the population, and
$-\infty \leq x \leq \infty$
When $\mu=0$ and $\sigma^{2}=\sigma=1$, the distribution is called a standardized or unit normal distribution. Then

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { where }-\infty \leq x \leq \infty
$$

A unit normal distribution table is included at the end of this section. In the table, the following notations are utilized:
$F(x)=$ the area under the curve from $-\infty$ to x,
$R(x)=$ the area under the curve from x to ∞, and
$W(x)=$ the area under the curve between $-x$ and x.

DISPERSION, MEAN, MEDIAN, AND MODE VALUES

If $X_{1}, X_{2}, \ldots, X_{n}$ represent the values of n items or observations, the arithmetic mean of these items or observations, denoted \bar{X}, is defined as

$$
\bar{X}=(1 / n)\left(X_{1}+X_{2}+\ldots+X_{n}\right)=(1 / n) \sum_{i=1}^{n} X_{i}
$$

$\bar{X} \rightarrow \mu$ for sufficiently large values of n. Therefore, for the purposes of this handbook, the following is accepted:

$$
\mu=\text { population mean }=\bar{X}
$$

The weighted arithmetic mean is

$$
\bar{X}_{w}=\frac{\sum w_{i} X_{i}}{\sum w_{i}}, \quad \text { where }
$$

$\bar{X}_{w}=$ the weighted arithmetic mean,
$X_{i}=$ the values of the observations to be averaged, and
$w_{i}=$ the weight applied to the X_{i} value.
The variance of the observations is the arithmetic mean of the squared deviations from the population mean. In symbols, $X_{1}, X_{2}, \ldots, X_{n}$ represent the values of the n sample observations of a population of size N. If μ is the arithmetic mean of the population, the population variance is defined by

$$
\begin{aligned}
\sigma^{2} & =(1 / N)\left[\left(X_{1}-\mu\right)^{2}+\left(X_{2}-\mu\right)^{2}+\ldots+\left(X_{N}-\mu\right)^{2}\right] \\
& =(1 / N) \sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}
\end{aligned}
$$

The standard deviation of a population is

$$
\sigma=\sqrt{(1 / N) \sum\left(X_{i}-\mu\right)^{2}}
$$

The sample variance is

$$
s^{2}=[1 /(n-1)] \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

The sample standard deviation is

$$
s=\sqrt{\left[\frac{1}{n-1}\right] \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

The coefficient of variation $=C V=s / \bar{X}$

The geometric mean $=\sqrt[n]{X_{1} X_{2} X_{3} \ldots X_{n}}$

The root-mean-square value $=\sqrt{(1 / n) \sum X_{i}^{2}}$
The median is defined as the value of the middle item when the data are rank-ordered and the number of items is odd. The median is the average of the middle two items when the rankordered data consists of an even number of items.
The mode of a set of data is the value that occurs with greatest frequency.

t-DISTRIBUTION

The variate t is defined as the quotient of two independent variates x and r where x is unit normal and r is the root mean square of n other independent unit normal variates; that is, $t=x / r$. The following is the t-distribution with n degrees of freedom:

$$
f(t)=\frac{\Gamma[(n+1)] / 2}{\Gamma(n / 2) \sqrt{n \pi}} \frac{1}{\left(1+t^{2} / n\right)^{(n+1) / 2}}
$$

where $-\infty \leq t \leq \infty$.
A table at the end of this section gives the values of $t_{\alpha n}$ for values of α and n. Note that in view of the symmetry of the t distribution,
$t_{1-\alpha, n}=-t_{\alpha, n}$. The function for α follows:

$$
\alpha=\int_{t_{\alpha, n}}^{\infty} f(t) d t
$$

A table showing probability and density functions is included on page 121 in the INDUSTRIAL ENGINEERING SECTION of this handbook.

GAMMA FUNCTION

$$
\Gamma(n)=\int_{o}^{\infty} t^{n-1} e^{-t} d t, \quad n>0
$$

CONFIDENCE INTERVALS

Confidence Interval for the Mean μ of a Normal Distribution
(a) Standard deviation σ is known

$$
\bar{X}-Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

(b) Standard deviation σ is not known

$$
\bar{X}-t_{\alpha / 2} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

where $t_{\alpha / 2}$ corresponds to $\mathrm{n}-1$ degrees of freedom.
Confidence Interval for the Difference Between Two Means
μ_{1} and μ_{2}
(a) Standard deviations σ_{1} and σ_{2} known

$$
\bar{X}_{1}-\bar{X}_{2}-Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \leq \mu_{1}-\mu_{2} \leq \bar{X}_{1}-\bar{X}_{2}+Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

(b) Standard deviations σ_{1} and σ_{2} are not known

$$
\bar{X}_{1}-\bar{X}_{2}-t_{\alpha / 2} \sqrt{\frac{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left[(n-1) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right]}{n_{1}+n_{2}-2}} \leq \mu_{1}-\mu_{2} \leq \bar{X}_{1}-\bar{X}_{2}-t_{\alpha / 2} \sqrt{\frac{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left[(n-1) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right]}{n_{1}+n_{2}-2}}
$$

where $t_{\alpha / 2}$ corresponds to $n_{1}+n_{2}-2$ degrees of freedom.

UNIT NORMAL DISTRIBUTION TABLE

\boldsymbol{x}	$f(x)$	$\boldsymbol{F}(\boldsymbol{x})$	$\boldsymbol{R}(\boldsymbol{x})$	2R(x)	$W(x)$
0.0	0.3989	0.5000	0.5000	1.0000	0.0000
0.1	0.3970	0.5398	0.4602	0.9203	0.0797
0.2	0.3910	0.5793	0.4207	0.8415	0.1585
0.3	0.3814	0.6179	0.3821	0.7642	0.2358
0.4	0.3683	0.6554	0.3446	0.6892	0.3108
0.5	0.3521	0.6915	0.3085	0.6171	0.3829
0.6	0.3332	0.7257	0.2743	0.5485	0.4515
0.7	0.3123	0.7580	0.2420	0.4839	0.5161
0.8	0.2897	0.7881	0.2119	0.4237	0.5763
0.9	0.2661	0.8159	0.1841	0.3681	0.6319
1.0	0.2420	0.8413	0.1587	0.3173	0.6827
1.1	0.2179	0.8643	0.1357	0.2713	0.7287
1.2	0.1942	0.8849	0.1151	0.2301	0.7699
1.3	0.1714	0.9032	0.0968	0.1936	0.8064
1.4	0.1497	0.9192	0.0808	0.1615	0.8385
1.5	0.1295	0.9332	0.0668	0.1336	0.8664
1.6	0.1109	0.9452	0.0548	0.1096	0.8904
1.7	0.0940	0.9554	0.0446	0.0891	0.9109
1.8	0.0790	0.9641	0.0359	0.0719	0.9281
1.9	0.0656	0.9713	0.0287	0.0574	0.9426
2.0	0.0540	0.9772	0.0228	0.0455	0.9545
2.1	0.0440	0.9821	0.0179	0.0357	0.9643
2.2	0.0355	0.9861	0.0139	0.0278	0.9722
2.3	0.0283	0.9893	0.0107	0.0214	0.9786
2.4	0.0224	0.9918	0.0082	0.0164	0.9836
2.5	0.0175	0.9938	0.0062	0.0124	0.9876
2.6	0.0136	0.9953	0.0047	0.0093	0.9907
2.7	0.0104	0.9965	0.0035	0.0069	0.9931
2.8	0.0079	0.9974	0.0026	0.0051	0.9949
2.9	0.0060	0.9981	0.0019	0.0037	0.9963
3.0	0.0044	0.9987	0.0013	0.0027	0.9973
Fractiles					
1.2816	0.1755	0.9000	0.1000	0.2000	0.8000
1.6449	0.1031	0.9500	0.0500	0.1000	0.9000
1.9600	0.0584	0.9750	0.0250	0.0500	0.9500
2.0537	0.0484	0.9800	0.0200	0.0400	0.9600
2.3263	0.0267	0.9900	0.0100	0.0200	0.9800
2.5758	0.0145	0.9950	0.0050	0.0100	0.9900

t-DISTRIBUTION TABLE

VALUES OF $\boldsymbol{t}_{\boldsymbol{\alpha} \boldsymbol{n} \boldsymbol{n}}$

n	$\boldsymbol{\alpha}=\mathbf{0 . 1 0}$	$\boldsymbol{\alpha}=0.05$	$\alpha=0.025$	$\boldsymbol{\alpha}=0.01$	$\alpha=0.005$	n
1	3.078	6.314	12.706	31.821	63.657	1
2	1.886	2.920	4.303	6.965	9.925	2
3	1.638	2.353	3.182	4.541	5.841	3
4	1.533	2.132	2.776	3.747	4.604	4
5	1.476	2.015	2.571	3.365	4.032	5
6	1.440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
10	1.372	1.812	2.228	2.764	3.169	10
11	1.363	1.796	2.201	2.718	3.106	11
12	1.356	1.782	2.179	2.681	3.055	12
13	1.350	1.771	2.160	2.650	3.012	13
14	1.345	1.761	2.145	2.624	2.977	14
15	1.341	1.753	2.131	2.602	2.947	15
16	1.337	1.746	2.120	2.583	2.921	16
17	1.333	1.740	2.110	2.567	2.898	17
18	1.330	1.734	2.101	2.552	2.878	18
19	1.328	1.729	2.093	2.539	2.861	19
20	1.325	1.725	2.086	2.528	2.845	20
21	1.323	1.721	2.080	2.518	2.831	21
22	1.321	1.717	2.074	2.508	2.819	22
23	1.319	1.714	2.069	2.500	2.807	23
24	1.318	1.711	2.064	2.492	2.797	24
25	1.316	1.708	2.060	2.485	2.787	25
26	1.315	1.706	2.056	2.479	2.779	26
27	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467	2.763	28
29	1.311	1.699	2.045	2.462	2.756	29
inf.	1.282	1.645	1.960	2.326	2.576	inf.

CRITICAL VALUES OF THE F DISTRIBUTION - TABLE

CRITICAL VALUES OF THE \boldsymbol{F} DISTRIBUTION - TABLE																			
For a particular combination of numerator and denominator degrees of freedom, entry represents the critical values of F corresponding to a specified upper tail area (α).																			
Denominator $d f_{2}$	Numerator $d f_{1}$																		
	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

DIFFERENTIAL CALCULUS

The Derivative

For any function $y \quad=f(x)$,
the derivative
$=D_{x} y=d y / d x=y^{\prime}$

$$
\begin{aligned}
y^{\prime} & =\operatorname{limit}_{\Delta x \rightarrow 0}[(\Delta y) /(\Delta x)] \\
& =\operatorname{limit}_{\Delta x \rightarrow 0}\{[f(x+\Delta x)-f(x)] /(\Delta x)\}
\end{aligned}
$$

$y^{\prime}=$ the slope of the curve $f(x)$.

TEST FOR A MAXIMUM

$y=f(x)$ is a maximum for
$x=a$, if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$.

TEST FOR A MINIMUM

$y=f(x)$ is a minimum for
$x=a$, if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$.

TEST FOR A POINT OF INFLECTION

$y=f(x)$ has a point of inflection at $x=a$,
if $\quad f^{\prime \prime}(a)=0$, and
if $\quad f^{\prime \prime}(x)$ changes sign as x increases through
$x=a$.

The Partial Derivative

In a function of two independent variables x and y, a derivative with respect to one of the variables may be found if the other variable is assumed to remain constant. If y is kept fixed, the function

$$
z=f(x, y)
$$

becomes a function of the single variable x, and its derivative (if it exists) can be found. This derivative is called the partial derivative of z with respect to x. The partial derivative with respect to x is denoted as follows:

$$
\frac{\partial z}{\partial x}=\frac{\partial f(x, y)}{\partial x}
$$

The Curvature of Any Curve

-

The curvature K of a curve at P is the limit of its average curvature for the arc $P Q$ as Q approaches P. This is also expressed as: the curvature of a curve at a given point is the rate-of-change of its inclination with respect to its arc length.

$$
K=\operatorname{limit}_{\Delta s \rightarrow 0} \frac{\Delta \alpha}{\Delta s}=\frac{d \alpha}{d s}
$$

CURVATURE IN RECTANGULAR COORDINATES

$$
K=\frac{y^{\prime \prime}}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}
$$

When it may be easier to differentiate the function with respect to y rather than x, the notation x^{\prime} will be used for the derivative.

$$
\begin{aligned}
& x^{\prime}=d x / d y \\
& K=\frac{-x^{\prime \prime}}{\left[1+\left(x^{\prime}\right)^{2}\right]^{3 / 2}}
\end{aligned}
$$

THE RADIUS OF CURVATURE

The radius of curvature R at any point on a curve is defined as the absolute value of the reciprocal of the curvature K at that point.

$$
\begin{array}{ll}
R=\frac{1}{|K|} & (K \neq 0) \\
R=\left|\frac{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}{\left|y^{\prime \prime}\right|}\right| & \left(y^{\prime \prime} \neq 0\right)
\end{array}
$$

L'Hospital's Rule (L'Hôpital's Rule)

If the fractional function $f(x) / g(x)$ assumes one of the indeterminate forms $0 / 0$ or ∞ / ∞ (where α is finite or infinite), then

$$
\operatorname{limit}_{x \rightarrow \alpha} f(x) / g(x)
$$

is equal to the first of the expressions

$$
\operatorname{limit}_{x \rightarrow \alpha} \frac{f^{\prime}(x)}{g^{\prime}(x)}, \operatorname{limit}_{x \rightarrow \alpha} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}, \operatorname{limit}_{x \rightarrow \alpha} \frac{f^{\prime \prime \prime}(x)}{g^{\prime \prime \prime}(x)}
$$

which is not indeterminate, provided such first indicated limit exists.

INTEGRAL CALCULUS

The definite integral is defined as:

$$
\operatorname{limit}_{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

Also, $\quad \Delta x_{i} \rightarrow 0$ for all i.
A table of derivatives and integrals is available on page 15. The integral equations can be used along with the following methods of integration:
A. Integration by Parts (integral equation \#6),
B. Integration by Substitution, and
C. Separation of Rational Fractions into Partial Fractions.

- Wade, Thomas L., Calculus, Copyright © 1953 by Ginn \& Company. Diagram reprinted by permission of Simon \& Schuster Publishers.

DERIVATIVES AND INDEFINITE INTEGRALS

In these formulas, u, v, and w represent functions of x. Also, a, c, and n represent constants. All arguments of the trigonometric functions are in radians. A constant of integration should be added to the integrals. To avoid terminology difficulty, the following definitions are followed: $\arcsin u=\sin ^{-1} u,(\sin u)^{-1}=1 / \sin u$.

1. $d c / d x=0$
2. $d x / d x=1$
3. $d(c u) / d x=c d u / d x$
4. $d(u+v-w) / d x=d u / d x+d v / d x-d w / d x$
5. $\quad d(u v) / d x=u d v / d x+v d u / d x$
6. $d(u v w) / d x=u v d w / d x+u w d v / d x+\nu w d u / d x$
7. $\frac{d(u / v)}{d x}=\frac{v d u / d x-u d v / d x}{v^{2}}$
8. $\quad d\left(u^{n}\right) / d x=n u^{n-1} d u / d x$
9. $d[f(u)] / d x=\{d[f(u)] / d u\} d u / d x$
10. $d u / d x=1 /(d x / d u)$
11. $\frac{d\left(\log _{a} u\right)}{d x}=\left(\log _{\mathrm{a}} e\right) \frac{1}{u} \frac{d u}{d x}$
12. $\frac{d(\ln u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
13. $\frac{d\left(a^{u}\right)}{d x}=(\ln a) a^{u} \frac{d u}{d x}$
14. $d\left(e^{u}\right) / d x=e^{u} d u / d x$
15. $d\left(u^{\nu}\right) / d x=v u^{\nu-1} d u / d x+(\ln u) u^{\nu} d v / d x$
16. $d(\sin u) / d x=\cos u d u / d x$
17. $d(\cos u) / d x=-\sin u d u / d x$
18. $d(\tan u) / d x=\sec ^{2} u d u / d x$
19. $d(\cot u) / d x=-\csc ^{2} u d u / d x$
20. $d(\sec u) / d x=\sec u \tan u d u / d x$
21. $d(\csc u) / d x=-\csc u \cot u d u / d x$
22. $\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\left(-\pi / 2 \leq \sin ^{-1} u \leq \pi / 2\right)$
23. $\frac{d\left(\cos ^{-1} u\right)}{d x}=-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
24. $\frac{d\left(\tan ^{-1} u\right)}{d x}=\frac{1}{1+u^{2}} \frac{d u}{d x}$

$$
\left(-\pi / 2<\tan ^{-1} u<\pi / 2\right)
$$

25. $\frac{d\left(\cot ^{-1} u\right)}{d x}=-\frac{1}{1+u^{2}} \frac{d u}{d x}$

$$
\left(0<\cot ^{-1} u<\pi\right)
$$

26. $\frac{d\left(\sec ^{-1} u\right)}{d x}=\frac{1}{u \sqrt{u^{2}-1}} \frac{d u}{d x}$

$$
\left(0 \leq \sec ^{-1} u<\pi / 2\right)\left(-\pi \leq \sec ^{-1} u<-\pi / 2\right)
$$

27. $\frac{d\left(\csc ^{-1} u\right)}{d x}=-\frac{1}{u \sqrt{u^{2}-1}} \frac{d u}{d x}$

$$
\left(0<\csc ^{-1} u \leq \pi / 2\right)\left(-\pi<\csc ^{-1} u \leq-\pi / 2\right)
$$

1. $\int d f(x)=f(x)$
2. $\int d x=x$
3. $\int a f(x) d x=a \int f(x) d x$
4. $\int[u(x) \pm v(x)] d x=\int u(x) d x \pm \int v(x) d x$
5. $\int x^{m} d x=\frac{x^{m+1}}{m+1}$
$(m \neq-1)$
6. $\int u(x) d v(x)=u(x) v(x)-\int v(x) d u(x)$
7. $\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|$
8. $\int \frac{d x}{\sqrt{x}}=2 \sqrt{x}$
9. $\int a^{x} d x=\frac{a^{x}}{\ln a}$
10. $\int \sin x d x=-\cos x$
11. $\int \cos x d x=\sin x$
12. $\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}$
13. $\int \cos ^{2} x d x=\frac{x}{2}+\frac{\sin 2 x}{4}$
14. $\int x \sin x d x=\sin x-x \cos x$
15. $\int x \cos x d x=\cos x+x \sin x$
16. $\int \sin x \cos x d x=\left(\sin ^{2} x\right) / 2$
17. $\int \sin a x \cos b x d x=-\frac{\cos (a-b) x}{2(a-b)}-\frac{\cos (a+b) x}{2(a+b)}$
18. $\int \tan x d x=-\ln |\cos x|=\ln |\sec x|$
19. $\int \cot x d x=-\ln |\csc x|=\ln |\sin x|$
20. $\int \tan ^{2} x d x=\tan x-x$
21. $\int \cot ^{2} x d x=-\cot x-x$
22. $\int e^{a x} d x=(1 / a) e^{a x}$
23. $\int x e^{a x} d x=\left(e^{a x} / a^{2}\right)(a x-1)$
24. $\int \ln x d x=x[\ln (x)-1]$
25. $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
26. $\int \frac{d x}{a x^{2}+c}=\frac{1}{\sqrt{a} c} \tan ^{-1}\left(x \sqrt{\frac{a}{c}}\right), \quad(a>0, c>0)$

27a. $\int \frac{d x}{a x^{2}+b x+c}=\frac{2}{\sqrt{4 a c-b^{2}}} \tan ^{-1} \frac{2 a x+b}{\sqrt{4 a c-b^{2}}}$

$$
\left(4 a c-b^{2}>0\right)
$$

27b. $\int \frac{d x}{a x^{2}+b x+c}=\frac{1}{\sqrt{b^{2}-4 a c}} \ln \left|\frac{2 a x+b-\sqrt{b^{2}-4 a c}}{2 a x+b+\sqrt{b^{2}-4 a c}}\right|$
$\left(b^{2}-4 a c>0\right)$
27c. $\int \frac{d x}{a x^{2}+b x+c}=-\frac{2}{2 a x+b}, \quad\left(b^{2}-4 a c=0\right)$

MENSURATION OF AREAS AND VOLUMES

Nomenclature

$A=$ total surface area
$P=$ perimeter
$V=$ volume

Parabola

$A=2 b h / 3$

Ellipse

where
$\lambda=(a-b) /(a+b)$

Circular Segment

-

$$
\begin{aligned}
& A=\left[r^{2}(\phi-\sin \phi)\right] / 2 \\
& \phi=s / r=2\{\arccos [(r-d) / r]\}
\end{aligned}
$$

Circular Sector

-

$$
\begin{aligned}
& A=\phi r^{2} / 2=s r / 2 \\
& \phi=s / r
\end{aligned}
$$

Sphere

-

$$
\begin{aligned}
& V=4 \pi r^{3} / 3=\pi d^{3} / 6 \\
& A=4 \pi r^{2}=\pi d^{2}
\end{aligned}
$$

MENSURATION OF AREAS AND VOLUMES

Parallelogram

$$
\begin{aligned}
P & =2(a+b) \\
d_{1} & =\sqrt{a^{2}+b^{2}-2 a b(\cos \phi)} \\
d_{2} & =\sqrt{a^{2}+b^{2}+2 a b(\cos \phi)} \\
d_{1}^{2}+d_{2}^{2} & =2\left(a^{2}+b^{2}\right) \\
A & =a h=a b(\sin \phi)
\end{aligned}
$$

If $a=b$, the parallelogram is a rhombus.
Regular Polygon (n equal sides)

Prismoid

$$
V=(h / 6)\left(A_{1}+A_{2}+4 A\right)
$$

Right Circular Cone

-

$$
V=\left(\pi r^{2} h\right) / 3
$$

$A=$ side area + base area

$$
\begin{aligned}
& \quad=\pi r\left(r+\sqrt{r^{2}+h^{2}}\right) \\
& A_{x}: A_{b}=x^{2}: h^{2}
\end{aligned}
$$

Right Circular Cylinder

Paraboloid of Revolution

$$
V=\frac{\pi d^{2} h}{8}
$$

CENTROIDS AND MOMENTS OF INERTIA

The location of the centroid of an area, bounded by the axes and the function $y=f(x)$, can be found by integration.

$$
\begin{aligned}
& x_{c}=\frac{\int x d A}{A} \\
& y_{c}=\frac{\int y d A}{A} \\
& A=\int f(x) d x \\
& d A=f(x) d x=g(y) d y
\end{aligned}
$$

The first moment of area with respect to the y-axis and the x-axis, respectively, are:

$$
\begin{aligned}
& M_{y}=\int x d A=x_{c} A \\
& M_{x}=\int y d A=y_{c} A
\end{aligned}
$$

when either $\overline{\mathrm{x}}$ or $\overline{\mathrm{y}}$ is of finite dimensions then $\int x d A$ or $\int y d A$ refer to the centroid x or y of $d A$ in these integrals. The moment of inertia (second moment of area) with respect to the y-axis and the x-axis, respectively, are:

$$
\begin{aligned}
I_{y} & =\int x^{2} d A \\
I_{x} & =\int y^{2} d A
\end{aligned}
$$

The moment of inertia taken with respect to an axis passing through the area's centroid is the centroidal moment of inertia. The parallel axis theorem for the moment of inertia with respect to another axis parallel with and located d units from the centroidal axis is expressed by

$$
I_{\text {parallel axis }}=I_{c}+A d^{2}
$$

In a plane, $\tau=\int r^{2} d A=I_{x}+I_{y}$
Values for standard shapes are presented in a table in the DYNAMICS section.

DIFFERENTIAL EQUATIONS

A common class of ordinary linear differential equations is

$$
b_{n} \frac{d^{n} y(x)}{d x^{n}}+\ldots+b_{1} \frac{d y(x)}{d x}+b_{0} y(x)=f(x)
$$

where $b_{n}, \ldots, b_{i}, \ldots, b_{1}, b_{0}$ are constants.
When the equation is a homogeneous differential equation, $f(x)=0$, the solution is

$$
y_{h}(x)=C_{1} e^{r_{i} x}+C_{2} e^{r_{2} x}+\ldots+C_{i} e^{r_{i} x}+\ldots+C_{n} e^{r_{n} x}
$$

where r_{n} is the nth distinct root of the characteristic polynomial $P(x)$ with

$$
P(r)=b_{n} r^{n}+b_{n-1} r^{n-1}+\ldots+b_{1} r+b_{0}
$$

If the root $r_{1}=r_{2}$, then $C_{2} e^{r_{2} x}$ is replaced with $C_{2} x e^{r_{1} x}$. Higher orders of multiplicity imply higher powers of x. The complete solution for the differential equation is

$$
y(x)=y_{h}(x)+y_{p}(x)
$$

where $y_{p}(x)$ is any solution with $f(x)$ present. If $f(x)$ has $e^{r_{n} x}$ terms, then resonance is manifested. Furthermore, specific $f(x)$ forms result in specific $y_{p}(x)$ forms, some of which are:

$f(\boldsymbol{x})$	$\boldsymbol{y}_{p}{ }^{(x)}$
A	B
$A e^{\alpha x}$	$B e^{\alpha x}, \alpha \neq r_{n}$
$A_{1} \sin \omega x+A_{2} \cos \omega x$	$B_{1} \sin \omega x+B_{2} \cos \omega x$

If the independent variable is time t, then transient dynamic solutions are implied.

First-Order Linear Homogeneous Differential Equations With Constant Coefficients

$$
y^{\prime}+a y=0, \text { where } a \text { is a real constant: }
$$

Solution, $y=C e^{-a t}$, where
$C=$ a constant that satisfies the initial conditions.

First-Order Linear Nonhomogeneous Differential Equations

$$
\begin{aligned}
\tau \frac{d y}{d t}+y & =K x(t) \quad x(t)=\left\{\begin{array}{ll}
A & t<0 \\
B & t>0
\end{array}\right\} \\
y(0) & =K A
\end{aligned}
$$

τ is the time constant
K is the gain
The solution is

$$
\begin{aligned}
& y(t)=K A+(K B-K A)\left(1-\exp \left(\frac{-t}{\tau}\right)\right) \text { or } \\
& \frac{t}{\tau}=\ln \left[\frac{K B-K A}{K B-y}\right]
\end{aligned}
$$

Second-Order Linear Homogeneous Differential Equations with Constant Coefficients

An equation of the form

$$
y^{\prime \prime}+2 a y^{\prime}+b y=0
$$

can be solved by the method of undetermined coefficients where a solution of the form $y=C e^{r x}$ is sought. Substitution of this solution gives

$$
\left(r^{2}+2 a r+b\right) C e^{r x}=0
$$

and since $C e^{r x}$ cannot be zero, the characteristic equation must vanish or

$$
r^{2}+2 a r+b=0
$$

The roots of the characteristic equation are

$$
r_{1,2}=-a \pm \sqrt{a^{2}-b}
$$

and can be real and distinct for $a^{2}>b$, real and equal for $a^{2}=$ b, and complex for $a^{2}<b$.
If $a^{2}>b$, the solution is of the form (overdamped)

$$
y=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}
$$

If $a^{2}=b$, the solution is of the form (critically damped)

$$
y=\left(C_{1}+C_{2} x\right) e^{r_{1} x}
$$

If $a^{2}<b$, the solution is of the form (underdamped)

$$
y=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)
$$

where

$$
\begin{aligned}
& \alpha=-a \\
& \beta=\sqrt{b-a^{2}}
\end{aligned}
$$

FOURIER SERIES

Every function $F(t)$ which has the period $\tau=2 \pi / \omega$ and satisfies certain continuity conditions can be represented by a series plus a constant.
$F(t)=a_{0} / 2+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right)$
The above equation holds if $F(t)$ has a continuous derivative $F^{\prime}(t)$ for all t. Multiply both sides of the equation by $\cos m \omega t$ and integrate from 0 to τ.

$$
\begin{gathered}
\int_{0}^{\tau} F(t) \cos m \omega t d t=\int_{0}^{\tau}\left(a_{0} / 2\right) \cos m \omega t d t \\
\int_{0}^{\tau} F(t) \cos m \omega t d t=\int_{0}^{\tau}\left(a_{0} / 2\right) \cos m \omega t d t \\
+\sum_{n=1}^{\infty}\left[a_{n} \int_{0}^{\tau} \cos n \omega t \cos m \omega t d t\right. \\
\left.+b_{n} \int_{0}^{\tau} \sin n \omega t \cos m \omega d t\right]
\end{gathered}
$$

Term-by-term integration of the series can be justified if $F(t)$ is continuous. The coefficients are

$$
\begin{array}{ll}
a_{n}=(2 / \tau) \int_{0}^{\tau} F(t) \cos n \omega t d t & \text { and } \\
b_{n}=(2 / \tau) \int_{0}^{\tau} F(t) \sin n \omega t d t, & \text { where }
\end{array}
$$

$\tau=2 \pi / \omega$. The constants a_{n}, b_{n} are the Fourier coefficients of $F(t)$ for the interval 0 to τ, and the corresponding series is called the Fourier series of $F(t)$ over the same interval. The integrals have the same value over any interval of length τ.
If a Fourier series representing a periodic function is truncated after term $n=N$, the mean square value $F_{N}{ }^{2}$ of the truncated series is given by the Parseval relation. This relation says that the mean square value is the sum of the mean square values of the Fourier components, or

$$
F_{N}^{2}=\left(a_{0} / 2\right)^{2}+(1 / 2) \sum_{n=1}^{N}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

and the RMS value is then defined to be the square root of this quantity or F_{N}.

FOURIER TRANSFORM

The Fourier transform pair, one form of which is

$$
\begin{aligned}
& F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& f(t)=[1 /(2 \pi)]]_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

can be used to characterize a broad class of signal models in terms of their frequency or spectral content. Some useful transform pairs are:

$\boldsymbol{f}(\boldsymbol{t})$	$\boldsymbol{F}(\boldsymbol{\omega})$
$\boldsymbol{\delta}(t)$	1
$u(t)$	$(1 / 2) \delta(\omega)+1 / \mathrm{j} \omega$
$u\left(t+\frac{\tau}{2}\right)-u\left(t-\frac{\tau}{2}\right)=r_{\text {rect }} \frac{t}{\tau}$	$\frac{\sin (\omega \tau / 2)}{\varpi \tau / 2}$ $e^{j \omega_{o} t}$
$2 \pi \delta\left(\omega-\omega_{o}\right)$	

Some mathematical liberties are required to obtain the second and fourth form. Other Fourier transforms are derivable from the Laplace transform by replacing s with $\mathrm{j} \omega$ provided

$$
\begin{aligned}
& f(t)=0, t<0 \\
& \int_{0}^{\infty}|f(t)| d t<\infty
\end{aligned}
$$

LAPLACE TRANSFORMS

The unilateral Laplace transform pair

$$
\begin{aligned}
& F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \\
& f(t)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) e^{s t} d t
\end{aligned}
$$

represents a powerful tool for the transient and frequency response of linear time invariant systems. Some useful Laplace transform pairs are [Note: The last two transforms represent the Final Value Theorem (F.V.T.) and Initial Value Theorem (I.V.T.) respectively. It is assumed that the limits exist.]:

$f(t)$	$\boldsymbol{F}(\mathrm{s})$
$\delta(t)$, Impulse at $t=0$	1
$u(t)$, Step at $t=0$	$1 / \mathrm{s}$
$\mathrm{t}[u(t)]$, Ramp at $t=0$	$1 / \mathrm{s}^{2}$
$e^{-\alpha t}$	$1 /(\mathrm{s}+\alpha)$
$t e^{-\alpha t}$	$1 /(\mathrm{s}+\alpha)^{2}$
$e^{-\alpha t} \sin \beta t$	$\left.\beta \Lambda(\mathrm{~s}+\alpha)^{2}+\beta^{2}\right]$
$e^{-\alpha t} \cos \beta t$	$\left.(\mathrm{~s}+\alpha) \Lambda(\mathrm{s}+\alpha)^{2}+\beta^{2}\right]$
$\frac{d^{n} f(t)}{d t^{n}}$	$s^{n} F(s)-\sum_{m=0}^{n-1} s^{n-m-1} \frac{d^{m} f(0)}{d^{m} t}$
$\int_{0}^{t} f(\tau) d \tau$	$(1 / s) F(s)$
$\int_{0}^{t} x(t-\tau) h(t) d \tau$	$H(s) X(s)$
$f(\mathrm{t}-\tau)$	$e^{-\alpha s} F(s)$
$\operatorname{limit}_{t \rightarrow \infty} f(t)$	$\operatorname{limit}_{s \rightarrow 0} s F(s)$
$\operatorname{limit}_{t \rightarrow 0} f(t)$	$\operatorname{limit}_{s \rightarrow \infty} s F(s)$

DIFFERENCE EQUATIONS

Difference equations are used to model discrete systems. Systems which can be described by difference equations include computer program variables iteratively evaluated in a loop, sequential circuits, cash flows, recursive processes, systems with time-delay components, etc. Any system whose input $v(t)$ and output $y(t)$ are defined only at the equally spaced intervals $t=k T$ can be described by a difference equation.

First-Order Linear Difference Equation

The difference equation

$$
\mathrm{P}_{\mathrm{k}}=P_{k-1}(1+i)-A
$$

represents the balance P of a loan after the k th payment A. If P_{k} is defined as $y(k)$, the model becomes

$$
y(k)-(1+i) y(k-1)=-A
$$

Second-Order Linear Difference Equation

The Fibonacci number sequence can be generated by

$$
y(k)=y(k-1)+y(k-2)
$$

where $y(-1)=1$ and $y(-2)=1$. An alternate form for this model is $f(\mathrm{k}+2)=f(k+1)+f(k)$

$$
\text { with } f(0)=1 \text { and } f(1)=1
$$

z-Transforms

The transform definition is

$$
F(z)=\sum_{k=0}^{\infty} f(k) z^{-k}
$$

The inverse transform is given by the contour integral

$$
f(k)=\frac{1}{2 \pi i} \oint_{\Gamma} F(z) z^{k-1} d z
$$

and it represents a powerful tool for solving linear shift invariant difference equations. A limited unilateral list of z transform pairs follows [Note: The last two transform pairs represent the Initial Value Theorem (I.V.T.) and the Final Value Theorem (F.V.T.) respectively.]:

$\boldsymbol{f}(\boldsymbol{k})$	$\boldsymbol{F}(z)$
$\delta(k)$, Impulse at $k=0$	1
$u(k)$, Step at $k=0$	$1 /\left(1-\mathrm{z}^{-1}\right)$
β^{k}	$1 /\left(1-\beta z^{-1}\right)$
$y(k-1)$	$z^{-1} Y(z)+y(-1)$
$y(k-2)$	$z^{-2} Y(z)+y(-2)+y(-1) z^{-1}$
$y(k+1)$	$z Y(z)-z y(0)$
$y(k+2)$	$z^{2} Y(z)-z^{2} y(0)-z y(1)$
$\sum_{m=0}^{\infty} X(k-m) h(m)$	$H(z) X(z)$
$\operatorname{limit}_{k \rightarrow 0} f(k)$	$\operatorname{limit}_{z \rightarrow \infty} F(z)$
$\operatorname{limit}_{k \rightarrow \infty} f(k)$	$\operatorname{limit}_{z \rightarrow 1}\left(1-z^{-1}\right) F(z)$

EULER'S APPROXIMATION

$$
x_{i+1}=x_{i}+\Delta t\left(d x_{i} / d t\right)
$$

NUMERICAL METHODS

Newton's Method of Root Extraction

Given a polynomial $P(x)$ with n simple roots, $a_{1}, a_{2}, \ldots, a_{n}$ where

$$
\begin{aligned}
P(x) & =\prod_{m=1}^{n}\left(x-a_{m}\right) \\
& =x^{n}+\alpha_{1} x^{n-1}+\alpha_{2} x^{n-2}+\ldots+\alpha_{n}
\end{aligned}
$$

and $P\left(a_{i}\right)=0$. A root a_{i} can be computed by the iterative algorithm

$$
a_{i}^{j+1}=a_{i}^{j}-\left|\frac{P(x)}{\partial P(x) / \partial x}\right| \quad x=a_{i}^{j}
$$

with $\quad\left|P\left(a_{i}^{j+1}\right)\right| \leq\left|P\left(a_{i}^{j}\right)\right| \quad$ Convergence is quadratic.

Newton's Method of Minimization

Given a scalar value function

$$
h(\boldsymbol{x})=h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

find a vector $x^{*} \in R_{n}$ such that

$$
h\left(\boldsymbol{x}^{*}\right) \leq h(\boldsymbol{x}) \text { for all } \boldsymbol{x}
$$

Newton's algorithm is

$$
\boldsymbol{x}_{\mathrm{K}+1}=\boldsymbol{x}_{\mathrm{K}}-\left.\left(\left.\frac{\partial^{2} \mathrm{~h}}{\partial \mathrm{x}^{2}}\right|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{K}}}\right)^{-1} \frac{\partial \mathrm{~h}}{\partial \mathrm{x}}\right|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{K}}}
$$

where

$$
\frac{\partial h}{\partial x}=\left[\begin{array}{l}
\frac{\partial h}{\partial x_{1}} \\
\frac{\partial h}{\partial x_{2}} \\
\cdots \\
\cdots \\
\frac{\partial h}{\partial x_{n}}
\end{array}\right]
$$

and

$$
\frac{\partial^{2} h}{\partial x^{2}}=\left[\begin{array}{ccccc}
\frac{\partial^{2} h}{\partial x_{1}^{2}} & \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \cdots & \cdots & \frac{\partial^{2} h}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} h}{\partial x_{2}^{2}} & \cdots & \cdots & \frac{\partial^{2} h}{\partial x_{2} \partial x_{n}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{\partial^{2} h}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} h}{\partial x_{2} \partial x_{n}} & \cdots & \cdots & \frac{\partial^{2} h}{\partial x_{n}^{2}}
\end{array}\right]
$$

Numerical Integration

Three of the more common numerical integration algorithms used to evaluate the integral

$$
\int_{a}^{b} f(x) d x
$$

are:

Euler's or Forward Rectangular Rule

$$
\int_{a}^{b} f(x) d x \approx \Delta x \sum_{k=0}^{n-1} f(a+k \Delta x)
$$

Trapezoidal Rule
for $n=1$

$$
\int_{a}^{b} f(x) d x \approx \Delta x\left[\frac{f(a)+f(b)}{2}\right]
$$

for $n>1$

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{2}\left[f(a)+2 \sum_{k=1}^{n-1} f(a+k \Delta x)+f(b)\right]
$$

Simpson's Rule/Parabolic Rule (n must be an even integer)
for $n=2$

$$
\int_{a}^{b} f(x) d x \approx\left(\frac{b-a}{6}\right)\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

for $n \geq 4$

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[\begin{array}{l}
f(a)+2 \sum_{k=2,4,6, \ldots}^{n-2} f(a+k \Delta x) \\
+4 \sum_{k=1,3,5, \ldots}^{n-1} f(a+k \Delta x)+f(b)
\end{array}\right]
$$

with

$$
\Delta x=(b-a) / n
$$

Numerical Solution of Ordinary Differential Equations

Given a differential equation

$$
d y / d t=f(y, t) \text { with } y(0)=y_{o}
$$

At some general time $k \Delta t$

$$
y[(k+1) \Delta t] \cong y(k \Delta t)+\Delta t f[y(k \Delta t), k \Delta t]
$$

which can be used with starting condition y_{o} to solve recursively for $y(\Delta t), y(2 \Delta t), \ldots, y(n \Delta t)$.
The method can be extended to nth order differential equations by recasting them as n first-order equations.

FORCE

A force is a vector quantity. It is defined when its (1) magnitude, (2) point of application, and (3) direction are known.

RESULTANT (TWO DIMENSIONS)

The resultant, F, of n forces with components $F_{x, i}$ and $F_{y, i}$ has the magnitude of

$$
F=\left[\left(\sum_{i=1}^{n} F_{x, i}\right)^{2}+\left(\sum_{i=1}^{n} F_{y, i}\right)^{2}\right]^{1 / 2}
$$

The resultant direction with respect to the x-axis using four-quadrant angle functions is

$$
\theta=\arctan \left(\sum_{i=1}^{n} F_{y, i} / \sum_{i=1}^{n} F_{x, i}\right)
$$

The vector form of the force is

$$
\boldsymbol{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}
$$

RESOLUTION OF A FORCE

$F_{x}=F \cos \theta_{x} ; F_{y}=F \cos \theta_{y} ; F_{z}=F \cos \theta_{z}$
$\cos \theta_{x}=F_{x} / F ; \cos \theta_{y}=F_{y} / F ; \cos \theta_{z}=F_{z} / F$
Separating a force into components (geometry of force is known $R=\sqrt{x^{2}+y^{2}+z^{2}}$)
$F_{x}=(x / R) F ; \quad F_{y}=(y / R) \mathrm{F} ; \quad F_{z}=(z / R) F$

MOMENTS (COUPLES)

A system of two forces that are equal in magnitude, opposite in direction, and parallel to each other is called a couple.
A moment \boldsymbol{M} is defined as the cross product of the radius vector distance \boldsymbol{r} and the force \boldsymbol{F} from a point to the line of action of the force.

$$
\boldsymbol{M}=\boldsymbol{r} \times \boldsymbol{F} ; \quad \begin{aligned}
& M_{x}=y F_{z}-z F_{y}, \\
& \\
& M_{y}=z F_{x}-x F_{z}, \text { and } \\
& \\
& M_{z}=x F_{y}-y F_{x} .
\end{aligned}
$$

SYSTEMS OF FORCES

$\boldsymbol{F}=\Sigma \boldsymbol{F}_{n}$
$\boldsymbol{M}=\Sigma\left(\boldsymbol{r}_{n} \times \boldsymbol{F}_{n}\right)$

Equilibrium Requirements

$\Sigma \boldsymbol{F}_{n}=0$
$\Sigma \boldsymbol{M}_{n}=0$

CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES

Formulas for centroids, moments of inertia, and first moment of areas are presented in the MATHEMATICS section for continuous functions. The following discrete formulas are for defined regular masses, areas, lengths, and volumes:

$$
\boldsymbol{r}_{c}=\Sigma m_{n} \boldsymbol{r}_{n} / \Sigma m_{n}, \text { where }
$$

$m_{n}=$ the mass of each particle making up the system,
$\boldsymbol{r}_{n}=$ the radius vector to each particle from a selected reference point, and
$\boldsymbol{r}_{c}=$ the radius vector to the center of the total mass from the selected reference point.

The moment of area $\left(M_{a}\right)$ is defined as

$$
\begin{aligned}
& M_{a y}=\Sigma x_{n} a_{n} \\
& M_{a x}=\Sigma y_{n} a_{n} \\
& M_{a z}=\Sigma z_{n} a_{n}
\end{aligned}
$$

The centroid of area is defined as

$$
\begin{aligned}
& \left.x_{a c}=M_{a y} / A\right\rceil \text { with respect to center } \\
& \left.y_{a c}=M_{a x} / A\right\} \text { of the coordinate system } \\
& z_{a c}=M_{a z} / A
\end{aligned}
$$

where $\quad A=\Sigma a_{n}$
The centroid of a line is defined as

$$
\begin{aligned}
& x_{l c}=\left(\sum x_{n} l_{n}\right) / L, \text { where } L=\sum l_{n} \\
& y_{l c}=\left(\sum y_{n} l_{n}\right) / L \\
& z_{l c}=\left(\sum z_{n} l_{n}\right) / L
\end{aligned}
$$

The centroid of volume is defined as

$$
\begin{aligned}
& x_{v c}=\left(\sum x_{n} v_{n}\right) / V, \text { where } V=\Sigma v_{n} \\
& y_{v c}=\left(\sum y_{n} v_{n}\right) / V \\
& z_{v c}=\left(\sum z_{n} v_{n}\right) / V
\end{aligned}
$$

MOMENT OF INERTIA

The moment of inertia, or the second moment of area, is defined as

$$
\begin{aligned}
I_{y} & =\int x^{2} d A \\
I_{x} & =\int y^{2} d A
\end{aligned}
$$

The polar moment of inertia J of an area about a point is equal to the sum of the moments of inertia of the area about any two perpendicular axes in the area and passing through the same point.

$$
\begin{aligned}
I_{z} & =J=I_{y}+I_{x}=\int\left(x^{2}+y^{2}\right) d A \\
& =r_{p}^{2} A, \text { where }
\end{aligned}
$$

$r_{p}=$ the radius of gyration (see page 23).

Moment of Inertia Transfer Theorem

The moment of inertia of an area about any axis is defined as the moment of inertia of the area about a parallel centroidal axis plus a term equal to the area multiplied by the square of the perpendicular distance d from the centroidal axis to the axis in question.

$$
\begin{aligned}
& I_{x}^{\prime}=I_{x_{c}}+d_{x}^{2} A \\
& I_{y}^{\prime}=I_{y_{c}}+d_{y}^{2} A, \quad \text { where }
\end{aligned}
$$

$d_{x}, d_{y}=$ distance between the two axes in question,
$I_{x_{c}}, I_{y_{c}}=$ the moment of inertia about the centroidal axis, and $I_{x}{ }^{\prime}, I_{y}{ }^{\prime}=$ the moment of inertia about the new axis.

Radius of Gyration

The radius of gyration r_{p}, r_{x}, r_{y} is the distance from a reference axis at which all of the area can be considered to be concentrated to produce the moment of inertia.

$$
r_{x}=\sqrt{I_{x} / A} ; \quad r_{y}=\sqrt{I_{y} / A} ; \quad r_{p}=\sqrt{J / A}
$$

Product of Inertia

The product of inertia ($I_{x y}$, etc.) is defined as:
$I_{x y}=\int x y d A$, with respect to the $x y$-coordinate system, $I_{x z}=\int x z d A$, with respect to the $x z$-coordinate system, and $I_{y z}=\int y z d A$, with respect to the $y z$-coordinate system.
The transfer theorem also applies:

$$
I_{x y}^{\prime}=I_{x_{c} y_{c}}+d_{x} d_{y} A \text { for the } x y \text {-coordinate system, etc., }
$$

$d_{x}=x$-axis distance between the two axes in question and $d_{y}=y$-axis distance between the two axes in question.

FRICTION

The largest frictional force is called the limiting friction. Any further increase in applied forces will cause motion.

$$
F=\mu N, \text { where }
$$

$F=$ friction force,
$\mu=$ coefficient of static friction, and
$N=$ normal force between surfaces in contact.

SCREW THREAD

For a screw-jack, square thread,

$$
M=\operatorname{Pr} \tan (\alpha \pm \phi), \text { where }
$$

+ is for screw tightening,
- is for screw loosening,
$M=$ external moment applied to axis of screw,
$P=$ load on jack applied along and on the line of the axis,
$r=$ the mean thread radius,
$\alpha=$ the pitch angle of the thread, and
$\mu=\tan \phi=$ the appropriate coefficient of friction.

BRAKE-BAND OR BELT FRICTION
$F_{1}=F_{2} e^{\mu \theta}$, where
$F_{1}=$ force being applied in the direction of impending motion,
$F_{2}=$ force applied to resist impending motion,
$\mu=$ coefficient of static friction, and
$\theta=$ the total angle of contact between the surfaces expressed in radians.

STATICALLY DETERMINATE TRUSS

Plane Truss

A plane truss is a rigid framework satisfying the following conditions:

1. The members of the truss lie in the same plane.
2. The members are connected at their ends by frictionless pins.
3. All of the external loads lie in the plane of the truss and are applied at the joints only.
4. The truss reactions and member forces can be determined using the equations of equilibrium.

$$
\Sigma \boldsymbol{F}=0 ; \Sigma \boldsymbol{M}=0
$$

5. A truss is statically indeterminate if the reactions and member forces cannot be solved with the equations of equilibrium.

Plane Truss: Method of Joints

The method consists of solving for the forces in the members by writing the two equilibrium equations for each joint of the truss.

$$
\Sigma F_{V}=0 \text { and } \Sigma F_{H}=0, \text { where }
$$

$F_{H}=$ horizontal forces and member components and $F_{V}=$ vertical forces and member components.

Plane Truss: Method of Sections

The method consists of drawing a free-body diagram of a portion of the truss in such a way that the unknown truss member force is exposed as an external force.

CONCURRENT FORCES

A system of forces wherein their lines of action all meet at one point.

Two Dimensions

$$
\Sigma F_{x}=0 ; \Sigma F_{y}=0
$$

Three Dimensions

$$
\Sigma F_{x}=0 ; \Sigma F_{y}=0 ; \Sigma F_{z}=0
$$

DYNAMICS

KINEMATICS

Vector representation of motion in space: Let $\boldsymbol{r}(t)$ be the position vector of a particle. Then the velocity is
$\boldsymbol{v}=d \boldsymbol{r} / d t$, where
$v=$ the instantaneous velocity of the particle, (length/time)
$t=$ time
The acceleration is
$\boldsymbol{a}=d \boldsymbol{v} / d t=d^{2} \boldsymbol{r} / d t^{2}$, where
$a=$ the instantaneous acceleration of the particle, (length/time/time)

Rectangular Coordinates

$$
\begin{aligned}
\boldsymbol{r} & =x \boldsymbol{i}+y \dot{\boldsymbol{j}}+z \boldsymbol{k} \\
\boldsymbol{v} & =d \boldsymbol{r} / d t=\ddot{\boldsymbol{i}}+\ddot{\boldsymbol{j}}+\ddot{z} \boldsymbol{k} \\
\boldsymbol{a} & =d^{2} \boldsymbol{r} / d t^{2}=\dddot{x} \ddot{\boldsymbol{i}}+\dddot{y} \boldsymbol{j}+\ddot{z} \boldsymbol{k}, \quad \text { where } \\
\dot{x} & =d x / d t=v_{x}, \text { etc. } \\
\ddot{x} & =d^{2} x / d t^{2}=a_{x}, \text { etc. }
\end{aligned}
$$

Transverse and Radial Components for Planar Problems

Unit vectors \boldsymbol{e}_{r} and $\boldsymbol{e}_{\boldsymbol{\theta}}$ are, respectively, colinear with and normal to the position vector.

$$
\begin{aligned}
\boldsymbol{r} & =\boldsymbol{r} \boldsymbol{e}_{r} \\
\boldsymbol{v} & =\dot{\boldsymbol{r}} \boldsymbol{e}_{r}+r \dot{\theta} \boldsymbol{e}_{\theta} \\
\boldsymbol{\alpha} & =\left(\ddot{r}-r \dot{\theta}^{2}\right) \boldsymbol{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \boldsymbol{e}_{\theta}
\end{aligned}
$$

$r=$ the radius,
$\theta=$ the angle between the x -axis and r,
$\dot{r}=d r / d t$, etc. and
$\ddot{r}=d^{2} r / d t^{2}$, etc.

Tangential and Normal Components

Unit vectors \boldsymbol{e}_{n} and \boldsymbol{e}_{t} are, respectively, normal and tangent to the path.

$$
\begin{aligned}
\boldsymbol{v} & =v_{t} \boldsymbol{e}_{t} \\
\boldsymbol{a} & =\left(d v_{t} / d t\right) \boldsymbol{e}_{t}+\left(v_{t}^{2} / \rho\right) \boldsymbol{e}_{n}, \text { where } \\
\rho & =\text { instantaneous radius of curvature and } \\
v_{t} & =\text { tangential velocity }
\end{aligned}
$$

Plane Circular Motion

Rotation about the origin with constant radius: The unit vectors are $\boldsymbol{e}_{t}=\boldsymbol{e}_{\theta}$ and $\boldsymbol{e}_{r}=-\boldsymbol{e}_{n}$.
Angular velocity

$$
\omega=\dot{\theta}=v_{t} / r
$$

Angular acceleration

$$
\begin{aligned}
& \boldsymbol{\alpha}=\dot{\omega}=\ddot{\theta}=a_{t} / r \\
& s=r \theta \\
& v_{t}=r \omega
\end{aligned}
$$

Tangential acceleration

$$
a_{t}=r \alpha=d v_{t} / d t
$$

Normal acceleration

$$
a_{n}=v_{t}^{2} / r=r \omega^{2}
$$

Straight Line Motion

Constant acceleration equations:

$$
\begin{aligned}
& s=s_{\mathrm{o}}+v_{\mathrm{o}} t+\left(a_{0} t^{2}\right) / 2 \\
& v=v_{\mathrm{o}}+a_{0} t \\
& v^{2}=v_{\mathrm{o}}^{2}+2 a_{\mathrm{o}}\left(s-s_{\mathrm{o}}\right), \text { where }
\end{aligned}
$$

$s=$ distance along the line traveled,
$s_{0}=$ an initial distance from origin (constant),
$v_{0}=$ an initial velocity (constant),
$a_{0}=\mathrm{a}$ constant acceleration,
$t=$ time, and
$v=$ velocity at time t.
For a free falling body, $a_{0}=g$ (downward)
Using variable velocity, $v(t)$

$$
s=s_{o}=\int_{0}^{t} v(t) d t
$$

Using variable acceleration, $a(t)$

$$
v=v_{o}+\int_{0}^{t} a(t) d t
$$

PROJECTILE MOTION

$a_{x}=0 ; \quad a_{y}=-g$
$v_{x}=v_{x 0}=v_{0} \cos \theta$
$v_{y}=v_{\mathrm{yo}}-g t=v_{\mathrm{o}} \sin \theta-g t$
$x=v_{x 0} t=v_{0} t \cos \theta$
$y=v_{y 0} t-g t^{2} / 2=v_{0} t \sin \theta-g t^{2} / 2$

CONCEPT OF WEIGHT

$W=m g$, where
$W=$ weight, N (lbf),
$m=$ mass, $\mathrm{kg}\left(\mathrm{lbf}-\mathrm{sec}^{2} / \mathrm{ft}\right)$, and
$g=$ local acceleration of gravity, $\mathrm{m} / \sec ^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$.

KINETICS

Newton's second law for a particle

$$
\Sigma \boldsymbol{F}=d(m \boldsymbol{v}) / d t, \text { where }
$$

$\Sigma \boldsymbol{F}=$ the sum of the applied forces acting on the particle, N (lbf).
For a constant mass,

$$
\Sigma \boldsymbol{F}=m d \boldsymbol{v} / d t=m \boldsymbol{a}
$$

One-Dimensional Motion of Particle

When referring to motion in the x-direction,

$$
a_{x}=F_{x} / m, \text { where }
$$

$F_{x}=$ the resultant of the applied forces in the

$$
x \text {-direction. } F_{x} \text { can depend on } t, x \text { and } v_{x} \text { in general. }
$$

If F_{x} depends only on t, then

$$
\begin{aligned}
& v_{x}(t)=v_{x 0}+\int_{0}^{t}\left[F_{x}\left(t^{\prime}\right) / m\right] d t^{\prime} \\
& x(t)=x_{0}+v_{x 0} t+\int_{0}^{t} v_{x}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

If the force is constant (independent of time, displacement, or velocity),

$$
\begin{aligned}
a_{x} & =F_{x} / m \\
v_{x} & =v_{x 0}+\left(F_{x} / m\right) t=v_{x 0}+a_{x} t \\
x & =x_{0}+v_{x 0} t+F_{x} t^{2} /(2 m) \\
& =x_{0}+v_{x 0} t+a_{x} t^{2} / 2
\end{aligned}
$$

Tangential and Normal Kinetics for Planar Problems

Working with the tangential and normal directions,

$$
\begin{aligned}
& \Sigma F_{t}=m a_{t}=m d v_{t} / d t \text { and } \\
& \Sigma F_{n}=m a_{n}=m\left(v_{t}^{2} / \rho\right)
\end{aligned}
$$

Impulse and Momentum

Assuming the mass is constant, the equation of motion is

$$
\begin{aligned}
& m d v_{x} / d t=F_{x} \\
& m d v_{x}=F_{x} d t \\
& m\left[v_{x}(t)-v_{x}(0)\right]=\int_{0}^{t} F_{x}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

The left side of the equation represents the change in linear momentum of a body or particle. The right side is termed the impulse of the force $F_{x}\left(t^{\prime}\right)$ between $t^{\prime}=0$ and $t^{\prime}=t$.

Work and Energy

Work W is defined as

$$
W=\int \boldsymbol{F} \cdot d \boldsymbol{r}
$$

(For particle flow, see FLUID MECHANICS section.)

KINETIC ENERGY

The kinetic energy of a particle is the work done by an external agent in accelerating the particle from rest to a velocity v.

$$
T=m v^{2} / 2
$$

In changing the velocity from v_{1} to v_{2}, the change in kinetic energy is

$$
T_{2}-T_{1}=m v_{2}^{2} / 2-m v_{1}^{2} / 2
$$

Potential Energy

The work done by an external agent in the presence of a conservative field is termed the change in potential energy.

Potential Energy in Gravity Field

$U=m g h$, where
$h=$ the elevation above a specified datum.

Elastic Potential Energy

For a linear elastic spring with modulus, stiffness, or spring constant k, the force is

$$
F_{s}=k x \text {, where }
$$

$x=$ the change in length of the spring from the undeformed length of the spring.
The potential energy stored in the spring when compressed or extended by an amount x is

$$
U=k x^{2} / 2
$$

The change of potential energy in deforming a spring from position x_{1} to position x_{2} is

$$
U_{2}-U_{1}=k x_{2}^{2} / 2-k x_{1}^{2} / 2
$$

Principle of Conservation of Work and Energy

If T_{i} and U_{i} are kinetic energy and potential energy at state i, then for conservative systems (no energy dissipation), the law of conservation of energy is

$$
U_{1}+T_{1}=U_{2}+T_{2}
$$

If friction is present, then the work done by the friction forces must be accounted for.

$$
U_{1}+T_{1}+W_{1 \rightarrow 2}=U_{2}+T_{2}
$$

(Care must be exercised during computations to correctly compute the algebraic sign of the work term).

Impact

Momentum is conserved while energy may or may not be conserved. For direct central impact with no external forces

$$
m_{1} \boldsymbol{v}_{1}+m_{2} \boldsymbol{v}_{2}=m_{1} \boldsymbol{v}_{1}^{\prime}+m_{2} \boldsymbol{v}_{2}^{\prime} \text {, where }
$$

$m_{1}, m_{2}=$ the masses of the two bodies,
$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}=$ their velocities before impact, and
$\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}=$ their velocities after impact.
For impact with dissipation of energy, the relative velocity expression is

$$
e=-\left(\frac{v_{1_{n}}^{\prime}-v_{2_{n}}^{\prime}}{v_{1_{n}}-v_{2_{n}}}\right)
$$

$e=$ the coefficient of restitution for the materials, and the subscript n denotes the components normal to the plane of impact.
Knowing e, the velocities after rebound are

$$
\begin{aligned}
& v_{1_{n}}^{\prime}=\frac{m_{2} v_{2_{n}}(1+e)+\left(m_{1}-e m_{2}\right) v_{1_{n}}}{m_{1}+m_{2}} \\
& v_{2}^{\prime}=\frac{m_{1} v_{1_{n}}(1+e)-\left(e m_{1}-m_{2}\right) v_{2_{n}}}{m_{1}+m_{2}}
\end{aligned}
$$

where $0 \leq e \leq 1$.
$e=1$, perfectly elastic
$e=0$, perfectly plastic (no rebound)

FRICTION

The Laws of Friction are

1. The total friction force F that can be developed is independent of the magnitude of the area of contact.
2. The total friction force F that can be developed is proportional to the normal force N.
3. For low velocities of sliding, the total friction force that can be developed is practically independent of the velocity, although experiments show that the force F necessary to start sliding is greater than that necessary to maintain sliding.
The formula expressing the laws of friction is

$$
F=\mu N \text {, where }
$$

$\mu=$ the coefficient of friction.
Static friction will be less than or equal to $\mu_{s} N$, where μ_{s} is the coefficient of static friction. At the point of impending motion,

$$
F=\mu_{s} N
$$

When motion is present

$$
F=\mu_{k} N \text {, where }
$$

$\mu_{k}=$ the coefficient of kinetic friction. The value of μ_{k} is often taken to be 75% of μ_{s}.
Belt friction is discussed in the Statics section.

MASS MOMENT OF INERTIA

$$
I_{z}=\int\left(x^{2}+y^{2}\right) d m
$$

A table listing moment of inertia formulas is available at the end of this section for some standard shapes.

Parallel Axis Theorem

$$
I_{z}=I_{z c}+m d^{2} \text {, where }
$$

$I_{z}=$ the mass moment of inertia about a specific axis (in this case, the z-axis),
$I_{z c}=$ the mass moment of inertia about the body's mass center (in this case, parallel to the z-axis),
$m=$ the mass of the body, and
$d=$ the normal distance from the mass center to the specific axis desired (in this case, the z-axis).
Also,

$$
I_{z}=m r_{z}^{2} \text {, where }
$$

$m=$ the total mass of the body and
$r_{z}=$ the radius of gyration (in this case, about the z-axis).

PLANE MOTION OF A RIGID BODY

For a rigid body in plane motion in the $x-y$ plane

$$
\begin{aligned}
m a_{x c} & =F_{x} \\
m a_{y c} & =F_{y} \\
I_{z c} \alpha & =M_{z c}, \text { where }
\end{aligned}
$$

$c=$ the center of gravity and
$\alpha=$ angular acceleration of the body.

Rotation About a Fixed Axis

$$
I_{O} \alpha=\Sigma M_{O}, \text { where }
$$

O denotes the axis about which rotation occurs.
For rotation about a fixed axis caused by a constant applied moment M

$$
\begin{aligned}
\alpha & =M / I \\
\omega & =\omega_{O}+(M / I) t \\
\theta & =\theta_{O}+\omega_{O} t+(M / 2 I) t^{2}
\end{aligned}
$$

The change in kinetic energy of rotation is the work done in accelerating the rigid body from ω_{O} to ω.

$$
I_{O} \omega^{2} / 2-I_{O} \omega_{O}^{2} / 2=\int_{\theta_{O}}^{\theta} M d \theta
$$

Kinetic Energy

The kinetic energy of a body in plane motion is

$$
T=m\left(v_{x c}^{2}+v_{y c}^{2}\right) / 2+I_{c} \omega^{2} / 2
$$

Instantaneous Center of Rotation

The instantaneous center of rotation for a body in plane motion is defined as that position about which all portions of that body are rotating.
-

$\mathrm{AC} \dot{\theta}=\mathrm{r} \omega$, and
$\mathrm{v}_{\mathrm{b}}=\mathrm{BC} \dot{\theta}$, where
$\mathrm{C}=$ the instantaneous center of rotation,
$\dot{\theta}=$ the rotational velocity about C , and
$\mathrm{AC}, \mathrm{BC}=$ radii determined by the geometry of the situation.

CENTRIFUGAL FORCE

For a rigid body (of mass m) rotating about a fixed axis, the centrifugal force of the body at the point of rotation is

$$
F_{c}=m r \omega^{2}=m v^{2} / r \text {, where }
$$

$r=$ the distance from the center of rotation to the center of the mass of the body.

BANKING OF CURVES (WITHOUT FRICTION)

$\tan \theta=v^{2} /(g r)$, where
$\theta=$ the angle between the roadway surface and the horizontal,
$v=$ the velocity of the vehicle, and
$r=$ the radius of the curve.

FREE VIBRATION

-

The equation of motion is

$$
m \ddot{x}=m g-k\left(x+\delta_{s t}\right)
$$

From static equilibrium

$$
m g=k \delta_{s t} \text { where }
$$

$\mathrm{k}=$ the spring constant, and
$\delta_{s t}=$ the static deflection of the spring supporting the weight (mg).

$$
\begin{aligned}
& m \ddot{x}+k x=0, \quad \text { or } \\
& \ddot{x}+(k / m) x=0
\end{aligned}
$$

The solution to this differential equation is
$x(t)=C_{1} \cos \sqrt{(k / m)} t+C_{2} \sin \sqrt{(k / m)} t$, where
$x(t)=$ the displacement in the x-direction and
$C_{1}, C_{2}=$ constants of integration whose values depend on the initial conditions of the problem.
The quantity $\sqrt{k / m}$ is called the undamped natural frequency ω_{n} or

$$
\omega_{n}=\sqrt{k / m}
$$

From the static deflection relation

$$
\omega_{n}=\sqrt{g / \delta_{s t}}
$$

The period of vibration is

$$
\tau=2 \pi / \omega_{n}=2 \pi \sqrt{m / k}=2 \pi \sqrt{\delta_{s t} / g}
$$

If the initial conditions are $x(0)=x_{0}$ and $\dot{x}(0)=v_{0}$, then

$$
x(t)=x_{0} \cos \omega_{n} t+\left(v_{0} / \omega_{n}\right) \sin \omega_{n} t
$$

If the initial conditions are $x(0)=x_{0}$ and $\dot{x}(0)=0$, then

$$
x(t)=x_{0} \cos \omega_{n} t
$$

which is the equation for simple harmonic motion where the amplitude of vibration is x_{0}.

Torsional Free Vibration

$\ddot{\theta}+\omega_{n}^{2} \theta=0$, where
$\omega_{n}=\sqrt{k_{t} / I}=\sqrt{G J / I L}$
$k_{t}=$ the torsional spring constant $=G J / L$,
$I=$ the mass moment of inertia of the body,
$G=$ the shear modulus,
$J=$ the area polar moment of inertia of the round shaft cross section, and
$L=$ the length of the round shaft.
The solution to the equation of motion is

$$
\theta=\theta_{0} \cos \omega_{n} t+\left(\dot{\theta}_{0} / \omega_{n}\right) \sin \omega_{n} t, \text { where }
$$

$\theta_{0}=$ the initial angle of rotation and
$\dot{\theta}_{0}=$ the initial angular velocity.
The period of torsional vibration is

$$
\tau=2 \pi / \omega_{n}=2 \pi \sqrt{I L / G J}
$$

The undamped circular natural frequency of torsional vibration is

$$
\omega_{n}=\sqrt{G J / I L}
$$

Figure	Area \& Centroid	Area Moment of Inertia	(Radius of Gyration) ${ }^{\mathbf{2}}$	Product of Inertia
	$\begin{aligned} & A=b h / 2 \\ & x_{c}=2 b / 3 \\ & y_{c}=h / 3 \end{aligned}$	$\begin{aligned} & I_{x_{c}}=b h^{3} / 36 \\ & I_{y_{c}}=b^{3} h / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=b^{3} h / 4 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{e}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 2 \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=A b h / 36=b^{2} h^{2} / 72 \\ & I_{x y}=A b h / 4=b^{2} h^{2} / 8 \end{aligned}$
	$\begin{aligned} & A=b h / 2 \\ & x_{c}=b / 3 \\ & y_{c}=h / 3 \end{aligned}$	$\begin{aligned} & I_{x_{c}}=b h^{3} / 36 \\ & I_{y_{c}}=b^{3} h / 36 \\ & I_{x}=b h^{3} / 12 \\ & I_{y}=b^{3} h / 12 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=b^{2} / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=b^{2} / 6 \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=-A b h / 36=-b^{2} h^{2} / 72 \\ & I_{x y}=A b h / 12=b^{2} h^{2} / 24 \end{aligned}$
	$\begin{aligned} & A=b h / 2 \\ & x_{c}=(a+b) / 3 \\ & y_{c}=h / 3 \end{aligned}$	$\begin{aligned} I_{x_{c}} & =b h^{3} / 36 \\ I_{y_{c}} & =\left[b h\left(b^{2}-a b+a^{2}\right)\right] / 36 \\ I_{x} & =b h^{3} / 12 \\ I_{y} & =\left[b h\left(b^{2}+a b+a^{2}\right)\right] / 12 \end{aligned}$	$\begin{aligned} & r_{x_{c}^{2}}^{2}=h^{2} / 18 \\ & r_{y_{c}}^{2}=\left(b^{2}-a b+a^{2}\right) / 18 \\ & r_{x}^{2}=h^{2} / 6 \\ & r_{y}^{2}=\left(b^{2}+a b+a^{2}\right) / 6 \end{aligned}$	$\begin{aligned} I_{x_{c} y_{c}} & =[\operatorname{Ah}(2 a-b)] / 36 \\ & =\left[b h^{2}(2 a-b)\right] / 72 \\ I_{x y} & =[A h(2 a+b)] / 12 \\ & =\left[b h^{2}(2 a+b)\right] / 24 \end{aligned}$
	$\begin{aligned} & A=b h \\ & x_{c}=b / 2 \\ & y_{c}=h / 2 \end{aligned}$	$\begin{aligned} I_{x_{c}} & =b h^{3} / 12 \\ I_{y_{c}} & =b^{3} h / 12 \\ I_{x} & =b h^{3} / 3 \\ I_{y} & =b^{3} h / 3 \\ J & =\left[b h\left(b^{2}+h^{2}\right)\right] / 12 \end{aligned}$	$\begin{aligned} & r_{x_{e}}^{2}=h^{2} / 12 \\ & r_{y_{e}}^{2}=b^{2} / 12 \\ & r_{x}^{2}=h^{2} / 3 \\ & r_{y}^{2}=b^{2} / 3 \\ & r_{p}^{2}=\left(b^{2}+h^{2}\right) / 12 \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=A b h / 4=b^{2} h^{2} / 4 \end{aligned}$
	$\begin{aligned} & A=h(a+b) / 2 \\ & y_{c}=\frac{h(2 a+b)}{3(a+b)} \end{aligned}$	$\begin{aligned} & I_{x_{c}}=\frac{h^{3}\left(a^{2}+4 a b+b^{2}\right)}{36(a+b)} \\ & I_{x}=\frac{h^{3}(3 a+b)}{12} \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=\frac{h^{2}\left(a^{2}+4 a b+b^{2}\right)}{18(a+b)} \\ & r_{x}^{2}=\frac{h^{2}(3 a+b)}{6(a+b)} \end{aligned}$	
	$\begin{aligned} & A=a b \sin \theta \\ & x_{c}=(b+a \cos \theta) / 2 \\ & y_{c}=(a \sin \theta) / 2 \end{aligned}$	$\begin{aligned} & I_{x_{c}}=\left(a^{3} b \sin ^{3} \theta\right) / 12 \\ & I_{y_{c}}=\left[a b \sin \theta\left(b^{2}+a^{2} \cos ^{2} \theta\right)\right] / 12 \\ & I_{x}=\left(a^{3} b \sin ^{3} \theta\right) / 3 \\ & I_{y}=\left[a b \sin \theta(b+a \cos \theta)^{2}\right] / 3 \\ & \quad-\left(a^{2} b^{2} \sin \theta \cos \theta\right) / 6 \end{aligned}$	$\begin{aligned} r_{x_{c}}^{2} & =(a \sin \theta)^{2} / 12 \\ r_{y_{c}}^{2} & =\left(b^{2}+a^{2} \cos ^{2} \theta\right) / 12 \\ r_{x}^{2} & =(a \sin \theta)^{2} / 3 \\ r_{y}^{2} & =(b+a \cos \theta)^{2} / 3 \\ \quad & \quad(a b \cos \theta) / 6 \end{aligned}$	$I_{x x_{c} y_{c}}=\left(a^{3} b \sin ^{2} \theta \cos \theta\right) / 12$

Figure	Area \& Centroid	Area Moment of Inertia	(Radius of Gyration) ${ }^{\mathbf{2}}$	Product of Inertia
	$\begin{aligned} & A=\pi a^{2} \\ & x_{c}=a \\ & y_{c}=a \end{aligned}$	$\begin{aligned} & I_{x_{c}}=I_{y_{c}}=\pi a^{4} / 4 \\ & I_{x}=I_{y}=5 \pi a^{4} / 4 \\ & J=\pi a^{4} / 2 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=a^{2} / 4 \\ & r_{x}^{2}=r_{y}^{2}=5 a^{2} / 4 \\ & r_{p}^{2}=a^{2} / 2 \end{aligned}$	$\begin{aligned} & I_{x_{x, y_{c}}}=0 \\ & I_{x y}=A a^{2} \end{aligned}$
	$\begin{aligned} & A=\pi\left(a^{2}-b^{2}\right) \\ & x_{c}=a \\ & y_{c}=a \end{aligned}$	$\begin{aligned} & I_{x_{c}}=I_{y_{c}}=\pi\left(a^{4}-b^{4}\right) / 4 \\ & I_{x}=I_{y}=\frac{5 \pi a^{4}}{4}-\pi a^{2} b^{2}-\frac{\pi b^{4}}{4} \\ & J=\pi\left(a^{4}-b^{4}\right) / 2 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=\left(a^{2}+b^{2}\right) / 4 \\ & r_{x}^{2}=r_{y}^{2}=\left(5 a^{2}+b^{2}\right) / 4 \\ & r_{p}^{2}=\left(a^{2}+b^{2}\right) / 2 \end{aligned}$	$\begin{aligned} & I_{x_{x}, y_{c}}=0 \\ & I_{x y}=A a^{2} \\ & =\pi a^{2}\left(a^{2}-b^{2}\right) \end{aligned}$
	$\begin{aligned} & A=\pi a^{2} / 2 \\ & x_{c}=a \\ & y_{c}=4 a /(3 \pi) \end{aligned}$	$\begin{aligned} & I_{x_{c}}=\frac{a^{4}\left(9 \pi^{2}-64\right)}{72 \pi} \\ & I_{y_{c}}=\pi a^{4} / 8 \\ & I_{x}=\pi a^{4} / 8 \\ & I_{y}=5 \pi a^{4} / 8 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=\frac{a^{2}\left(9 \pi^{2}-64\right)}{36 \pi^{2}} \\ & r_{y_{c}}^{2}=a^{2} / 4 \\ & r_{x}^{2}=a^{2} / 4 \\ & r_{y}^{2}=5 a^{2} / 4 \end{aligned}$	$\begin{aligned} & I_{x_{x, y_{c}}}=0 \\ & I_{x y}=2 a^{2} / 3 \end{aligned}$
	$\begin{aligned} & A=a^{2} \theta \\ & x_{c}=\frac{2 a}{3} \frac{\sin \theta}{\theta} \\ & y_{c}=0 \end{aligned}$	$\begin{aligned} & I_{x}=a^{4}(\theta-\sin \theta \cos \theta) / 4 \\ & I_{y}=a^{4}(\theta+\sin \theta \cos \theta) / 4 \end{aligned}$	$\begin{aligned} & r_{x}^{2}=\frac{a^{2}}{4} \frac{(\theta-\sin \theta \cos \theta)}{\theta} \\ & r_{y}^{2}=\frac{a^{2}}{4} \frac{(\theta+\sin \theta \cos \theta)}{\theta} \end{aligned}$	$\begin{aligned} & I_{x_{c} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$
	$\begin{aligned} & A=a^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right) \\ & x_{c}=\frac{2 a}{3} \frac{\sin ^{3} \theta}{\theta-\sin \theta \cos \theta} \\ & y_{c}=0 \end{aligned}$	$\begin{aligned} & I_{x}=\frac{A a^{2}}{4}\left[1-\frac{2 \sin ^{3} \theta \cos \theta}{3 \theta-3 \sin \theta \cos \theta}\right] \\ & I_{y}=\frac{A a^{2}}{4}\left[1+\frac{2 \sin ^{3} \theta \cos \theta}{\theta-\sin \theta \cos \theta}\right] \end{aligned}$	$\begin{aligned} & r_{x}^{2}=\frac{a^{2}}{4}\left[1-\frac{2 \sin ^{3} \theta \cos \theta}{3 \theta-3 \sin \theta \cos \theta}\right] \\ & r_{y}^{2}=\frac{a^{2}}{4}\left[1+\frac{2 \sin 3 \cos \theta}{\theta-\sin \theta \cos \theta}\right] \end{aligned}$	$\begin{aligned} & I_{x_{y} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$
	$\begin{aligned} & A=4 a b / 3 \\ & x_{c}=3 a / 5 \\ & y_{c}=0 \end{aligned}$	$\begin{aligned} & I_{x_{c}}=I_{x}=4 a b^{3} / 15 \\ & I_{y_{c}}=16 a^{3} b / 175 \\ & I_{y}=4 a^{3} b / 7 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{x}^{2}=b^{2} / 5 \\ & r_{y_{c}}^{2}=12 a^{2} / 175 \\ & r_{y}^{2}=3 a^{2} / 7 \end{aligned}$	$\begin{aligned} & I_{x_{y} y_{c}}=0 \\ & I_{x y}=0 \end{aligned}$

Figure	Area \& Centroid	Area Moment of Inertia	(Radius of Gyration) ${ }^{\mathbf{2}}$	Product of Inertia
 haLF A PARABOLA	$\begin{aligned} & A=2 a b / 3 \\ & x_{c}=3 a / 5 \\ & y_{c}=3 b / 8 \end{aligned}$	$\begin{aligned} & I_{x}=2 a b^{3} / 15 \\ & I_{y}=2 a b^{3} / 7 \end{aligned}$	$\begin{aligned} & r_{x}^{2}=b^{2} / 5 \\ & r_{y}^{2}=3 a^{2} / 7 \end{aligned}$	$I_{x y}=A a b / 4=a^{2} b^{2}$
 $\mathrm{n}^{\text {nh }}$ DEGREE PARABOLA	$\begin{aligned} & A=b h /(n+1) \\ & x_{c}=\frac{n+1}{n+2} b \\ & y_{c}=\frac{h}{2} \frac{n+1}{2 n+1} \end{aligned}$	$\begin{aligned} & I_{x}=\frac{b h^{3}}{3(3 n+1)} \\ & I_{y}=\frac{h b^{3}}{n+3} \end{aligned}$	$\begin{aligned} & r_{x}^{2}=\frac{h^{2}(n+1)}{3(3 n+1)} \\ & r_{y}^{2}=\frac{n+1}{n+3} b^{2} \end{aligned}$	
$\mathrm{n}^{\text {th }}$ DEGREE PARABOLA	$\begin{aligned} & A=\frac{n}{n+1} b h \\ & x_{c}=\frac{n+1}{2 n+1} b \\ & y_{c}=\frac{n+1}{2(n+2)} h \end{aligned}$	$\begin{aligned} & I_{x}=\frac{n}{3(n+3)} b h^{3} \\ & I_{y}=\frac{n}{3 n+1} b^{3} h \end{aligned}$	$\begin{aligned} & r_{x}^{2}=\frac{n+1}{3(n+1)} h^{2} \\ & r_{y}^{2}=\frac{n+1}{3 n+1} b^{2} \end{aligned}$	

Figure	Mass \& Centroid	Mass Moment of Inertia	(Radius of Gyration) ${ }^{\mathbf{2}}$	Product of Inertia
	$\begin{aligned} & M=\mathrm{P} L A \\ & x_{c}=\mathrm{L} / 2 \\ & y_{c}=0 \\ & z_{c}=0 \\ & \delta=\text { line density } \end{aligned}$	$\begin{aligned} I_{x} & =I_{x_{c}}=0 \\ I_{y_{c}} & =I_{z_{c}}=M L^{2} / 12 \\ I_{y} & =I_{z}=M L^{2} / 3 \end{aligned}$	$\begin{aligned} & r_{x}^{2}=r_{x_{c}}^{2}=0 \\ & r_{y_{c}}^{2}=r_{z_{c}}^{2}=L^{2} / 12 \\ & r_{y}^{2}=r_{z}^{2}=L^{2} / 3 \end{aligned}$	$\begin{aligned} & I_{x_{c}} y_{c}, \text { etc. }=0 \\ & I_{x y}, \text { etc. }=0 \end{aligned}$
	$\begin{aligned} M= & 2 \pi \mathrm{P} R A \\ x_{c}= & \mathrm{R} \\ y_{c}= & \mathrm{R} \\ z_{c}= & 0 \\ \delta= & \text { line density } \\ & \text { (mass/L) } \end{aligned}$	$\begin{aligned} I_{x_{c}} & =I_{y_{c}}=M R^{2} / 2 \\ I_{z_{c}} & =M R^{2} \\ I_{x} & =I_{y}=3 M R^{2} / 2 \\ I_{z} & =3 M R^{2} \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{y_{c}}^{2}=R^{2} / 2 \\ & r_{2 c}^{2}=R^{2} \\ & r_{x}^{2}=r_{y}^{2}=3 R^{2} / 2 \\ & r_{z}^{2}=3 R^{2} \end{aligned}$	$\begin{aligned} & I_{x_{x y},}, \text { etc. }=0 \\ & I_{z, z_{c}}=M R^{2} \\ & I_{x z}=I_{y z}=0 \end{aligned}$
	$\begin{aligned} M= & \pi \mathrm{PR}^{2} A \\ x_{c}= & 0 \\ y_{c}= & \mathrm{h} / 2 \\ z_{c}= & 0 \\ \delta= & \text { line density } \\ & \text { (mass/L) } \end{aligned}$	$\begin{aligned} & I_{x_{c}}=I_{z_{c}}=M\left(3 R^{2}+h^{2}\right) / 12 \\ & I_{y_{c}}=I_{y}=M R^{2} / 2 \\ & I_{x}=I_{z}=M\left(3 R^{2}+4 h^{2}\right) / 12 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{z_{c}}^{2}=\left(3 R^{2}+h^{2}\right) / 12 \\ & r_{y_{c}}^{2}=r_{y}^{2}=R^{2} / 2 \\ & r_{x}^{2}=r_{z}^{2}=\left(3 R^{2}+4 h^{2}\right) / 12 \end{aligned}$	$\begin{aligned} & I_{x_{y_{c}}}, \text { etc. }=0 \\ & I_{x y} \text {,etc. }=0 \end{aligned}$
	$\begin{aligned} & M=\pi \rho h\left(R_{1}^{2}-R_{2}^{2}\right) \\ & x_{c}=0 \\ & y_{c}=h / 2 \\ & z_{c}=0 \\ & \delta=\text { mass } / \mathrm{vol} . \end{aligned}$	$\begin{aligned} I_{x_{c}} & =I_{z_{c}} \\ & =M\left(3 R_{1}^{2}+3 R_{2}^{2}+h^{2}\right) / 12 \\ I_{y_{c}} & =I_{y}=M\left(R_{1}^{2}+R_{2}^{2}\right) / 2 \\ I_{x} & =I_{z} \\ & =M\left(3 R_{1}^{2}+3 R_{2}^{2}+4 h^{2}\right) / 12 \end{aligned}$	$\begin{aligned} r_{x_{c}}^{2} & =r_{z_{c}}^{2}=\left(3 R_{1}^{2}+3 R_{2}^{2}+h^{2}\right) / 12 \\ r_{y_{c}}^{2} & =r_{y}^{2}=\left(R_{1}^{2}+R_{2}^{2}\right) / 2 \\ r_{x}^{2} & =r_{z}^{2} \\ & =\left(3 R_{1}^{2}+3 R_{2}^{2}+4 h^{2}\right) / 12 \end{aligned}$	$\begin{aligned} & I_{x_{y_{y}}} \text {,etc. }=0 \\ & I_{x y} \text {,etc. }=0 \end{aligned}$
	$\begin{aligned} & M=4 \pi \rho R^{3} / 3 \\ & x_{c}=0 \\ & y_{c}=0 \\ & z_{c}=0 \\ & \delta=\text { mass } / \mathrm{vol} . \end{aligned}$	$\begin{aligned} & I_{x_{c}}=I_{x}=2 M R^{2} / 5 \\ & I_{y_{c}}=I_{y}=2 M R^{2} / 5 \\ & I_{z_{c}}=I_{z}=2 M R^{2} / 5 \end{aligned}$	$\begin{aligned} & r_{x_{c}}^{2}=r_{x}^{2}=2 R^{2} / 5 \\ & r_{y_{c}}^{2}=r_{y}^{2}=2 R^{2} / 5 \\ & r_{z_{c}}^{2}=r_{z}^{2}=2 R^{2} / 5 \end{aligned}$	$I_{x_{c} y_{c}}$, etc. $=0$

MECHANICS OF MATERIALS

UNIAXIAL STRESS-STRAIN

Stress-Strain Curve for Mild Steel

The slope of the linear portion of the curve equals the modulus of elasticity.

ENGINEERING STRAIN $\boldsymbol{\varepsilon}=\Delta L / L_{0}$, where

$\varepsilon=$ engineering strain (units per unit),
$\Delta L=$ change in length (units) of member,
$L_{0}=$ original length (units) of member,
$\varepsilon_{p l}=$ plastic deformation (permanent), and
$\varepsilon_{e l}=$ elastic deformation (recoverable).
Equilibrium requirements: $\Sigma \boldsymbol{F}=0 ; \Sigma \boldsymbol{M}=0$
Determine geometric compatibility with the restraints. Use a linear force-deformation relationship;

$$
F=k \delta .
$$

DEFINITIONS

Shear Stress-Strain

$\gamma=\tau / G$, where
$\gamma=$ shear strain,
$\tau=$ shear stress, and
$G=$ shear modulus (constant in linear force-deformation relationship).

$$
G=\frac{E}{2(1+v)} \text {, where }
$$

$\mathrm{E}=$ modulus of elasticity
$\nu=$ Poisson's ratio,
$=-$ (lateral strain)/(longitudinal strain).

Uniaxial Loading and Deformation

$\sigma=P / A$, where
$\sigma=$ stress on the cross section,
$P=$ loading, and
$A=$ cross-sectional area.
$\varepsilon=\delta / L$, where
$\delta=$ longitudinal deformation and
$L=$ length of member.

$$
\begin{aligned}
& E=\sigma / \varepsilon=\frac{P / A}{\delta / L} \\
& \delta=\frac{P L}{A E}
\end{aligned}
$$

THERMAL DEFORMATIONS

$\delta_{t}=\alpha L\left(T-T_{o}\right)$, where
$\delta_{t}=$ deformation caused by a change in temperature,
$\alpha=$ temperature coefficient of expansion,
$L=$ length of member,
$T=$ final temperature, and
$T_{o}=$ initial temperature.

CYLINDRICAL PRESSURE VESSEL

Cylindrical Pressure Vessel

For internal pressure only, the stresses at the inside wall are:

$$
\sigma_{t}=P_{i} \frac{r_{o}^{2}+r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \quad \text { and } \quad 0>\sigma_{r}>-P_{i}
$$

For external pressure only, the stresses at the outside wall are:

$$
\sigma_{t}=-P_{o} \frac{r_{o}^{2}+r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}} \text { and } 0>\sigma_{r}>-P_{o}, \quad \text { where }
$$

$\sigma_{t}=$ tangential (hoop) stress,
$\sigma_{r}=$ radial stress,
$P_{i}=$ internal pressure
$P_{o}=$ external pressure
$r_{i}=$ inside radius
$r_{o}=$ outside radius
For vessels with end caps, the axial stress is:

$$
\sigma_{a}=P_{i} \frac{r_{i}^{2}}{r_{o}^{2}-r_{i}^{2}}
$$

These are principal stresses.

When the thickness of the cylinder wall is about one-tenth or less, of inside radius, the cylinder can be considered as thinwalled. In which case, the internal pressure is resisted by the hoop stress

$$
\sigma_{t}=\frac{P_{i} r}{t} \quad \text { and } \quad \sigma_{a}=\frac{P_{i} r}{2 t}
$$

where $\mathrm{t}=$ wall thickness.

STRESS AND STRAIN

Principal Stresses

For the special case of a two-dimensional stress state, the equations for principal stress reduce to
$\sigma_{a}, \sigma_{b}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}$
$\sigma_{c}=0$
The two nonzero values calculated from this equation are temporarily labeled σ_{a} and σ_{b} and the third value σ_{c} is always zero in this case. Depending on their values, the three roots are then labeled according to the convention: algebraically largest $=\sigma_{1}$, algebraically smallest $=\sigma_{3}$, other $=\sigma_{2}$. A typical 2D stress element is shown below with all indicated components shown in their positive sense.

Mohr's Circle - Stress, 2D

To construct a Mohr's circle, the following sign conventions

1. Tensile normal stress components are plotted on the horizontal axis and are considered positive. Compressive normal stress components are negative.
2. For constructing Mohr's circle only, shearing stresses are plotted above the normal stress axis when the pair of shearing stresses, acting on opposite and parallel faces of an element, forms a clockwise couple. Shearing stresses are plotted below the normal axis when the shear stresses form a counterclockwise couple.
The circle drawn with the center on the normal stress (horizontal) axis with center, C , and radius, R, where

$$
C=\frac{\sigma_{x}+\sigma_{y}}{2}, \quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

The two nonzero principal stresses are then:

$$
\begin{aligned}
\sigma_{a} & =C+R \\
\sigma_{b} & =C-R
\end{aligned}
$$

The maximum inplane shear stress is $\tau_{\max }=R$. However, the maximum shear stress considering three dimensions is always $\tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2}$.

Hooke's Law

Three-dimensional case:

$$
\begin{array}{ll}
\varepsilon_{x}=(1 / E)\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] & \gamma_{x y}=\tau_{x y} / G \\
\varepsilon_{y}=(1 / E)\left[\sigma_{y}-v\left(\sigma_{z}+\sigma_{x}\right)\right] & \gamma_{y z}=\tau_{y z} / G \\
\varepsilon_{z}=(1 / E)\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] & \gamma_{z x}=\tau_{z x} / G
\end{array}
$$

Plane stress case $\left(\sigma_{z}=0\right)$:
$\varepsilon_{x}=(1 / E)\left(\sigma_{x}-v \sigma_{y}\right)$
$\varepsilon_{y}=(1 / E)\left(\sigma_{y}-v \sigma_{x}\right)$
$\varepsilon_{z}=-(1 / E)\left(v \sigma_{x}+v \sigma_{y}\right)$

$$
\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}
$$

Uniaxial case $\left(\sigma_{y}=\sigma_{z}=0\right): \quad \sigma_{x}=E \varepsilon_{x}$ or $\sigma=E \varepsilon$ where
$\varepsilon_{\mathrm{x}}, \varepsilon_{\mathrm{y}}, \varepsilon_{\mathrm{z}}=$ normal strain,
$\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}=$ normal stress,
$\gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{zx}}=$ shear strain,
$\tau_{\mathrm{xy}}, \tau_{\mathrm{yz}}, \tau_{\mathrm{zx}}=$ shear stress,
$E=$ modulus of elasticity,
$G=$ shear modulus, and
$v=$ Poisson's ratio.

STATIC LOADING FAILURE THEORIES

Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure occurs when one of the three principal stresses equals the strength of the material. If $\sigma_{1}>\sigma_{2}>\sigma_{3}$, then the theory predicts that failure occurs whenever $\sigma_{1} \geq S_{t}$ or $\sigma_{3} \leq-S_{c}$ where S_{t} and S_{c} are the tensile and compressive strengths, respectively.

Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding begins when the maximum shear stress equals the maximum shear stress in a tension-test specimen of the same material when that specimen begins to yield. If $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$, then the theory predicts that yielding will occur whenever $\tau_{\max } \geq S_{y} / 2$ where S_{y} is the yield strength.

Distortion-Energy Theory

The distortion-energy theory states that yielding begins whenever the distortion energy in a unit volume equals the distortion energy in the same volume when uniaxially stressed to the yield strength. The theory predicts that yielding will occur whenever

$$
\left[\frac{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}}{2}\right]^{1 / 2} \geq S_{y}
$$

TORSION

$$
\gamma_{\phi z}=\operatorname{limit}_{\Delta z \rightarrow 0} r(\Delta \phi / \Delta z)=r(d \phi / d z)
$$

The shear strain varies in direct proportion to the radius, from zero strain at the center to the greatest strain at the outside of the shaft. $d \phi / d z$ is the twist per unit length or the rate of twist.

$$
\begin{aligned}
& \tau_{\phi z}=G \gamma_{\phi z}=G r(d \phi / d z) \\
& T=G(d \phi / d z) \int_{A} r^{2} d A=G J(d \phi / d z)
\end{aligned}
$$

where
$J=$ polar moment of inertia (see table at end of DYNAMICS section).

$$
\phi=\int_{o}^{L} \frac{T}{G J} d z=\frac{T L}{G J}, \text { where }
$$

$\phi=$ total angle (radians) of twist,
$T=$ torque, and
$L=$ length of shaft.

$$
\begin{aligned}
& \tau_{\phi \mathrm{z}}=G r[T /(G J)]=T r / J \\
& \frac{T}{\phi}=\frac{G J}{L}, \text { where }
\end{aligned}
$$

T / ϕ gives the twisting moment per radian of twist. This is called the torsional stiffness and is often denoted by the symbol k or c.

For Hollow, Thin-Walled Shafts

$$
\tau=\frac{T}{2 A_{m} t} \text {, where }
$$

$t=$ thickness of shaft wall and
$A_{m}=$ the total mean area enclosed by the shaft measured to the midpoint of the wall.

BEAMS

Shearing Force and Bending Moment Sign Conventions

1. The bending moment is positive if it produces bending of the beam concave upward (compression in top fibers and tension in bottom fibers).
2. The shearing force is positive if the right portion of the beam tends to shear downward with respect to the left.

(M) equations are:

$$
\begin{aligned}
& q(x)=-\frac{d V(x)}{d x} \\
& V=\frac{d M(x)}{d x} \\
& V_{2}-V_{1}=\int_{x_{1}}^{x^{2}}[-q(x)] d x \\
& M_{2}-M_{1}=\int_{x_{1}}^{x^{2}} V(x) d x
\end{aligned}
$$

Stresses in Beams

$$
\varepsilon_{x}=-y / \rho, \text { where }
$$

$\rho=$ the radius of curvature of the deflected axis of the beam and
$y=$ the distance from the neutral axis to the longitudinal fiber in question.
Using the stress-strain relationship $\sigma=E \varepsilon$,
Axial Stress: $\quad \sigma_{x}=-E y / \rho$, where
$\sigma_{x}=$ the normal stress of the fiber located y-distance from the neutral axis.

$$
1 / \rho=M /(E I), \text { where }
$$

$M=$ the moment at the section and
$I=$ the moment of inertia of the cross-section.
$\sigma_{x}=-M y / I$, where
$y=$ the distance from the neutral axis to the fiber location above or below the axis. Let $y=c$, where $c=$ distance from the neutral axis to the outermost fiber of a symmetrical beam section.

$$
\sigma_{x}= \pm M c / I
$$

Let $S=I / c$: then, $\sigma_{x}= \pm M / S$, where
$S=$ the elastic section modulus of the beam member.
Transverse shear flow: $q=V Q / I$ and
Transverse shear stress: $\tau_{x y}=V Q /(I b)$, where
$q=$ shear flow,
$\tau_{x y}=$ shear stress on the surface,
$V=$ shear force at the section,
$b=$ width or thickness of the cross-section, and
$Q=A^{\prime} \bar{y}^{\prime}$ where
$A^{\prime}=$ area above the layer (or plane) upon which the desired transverse shear stress acts and
$\bar{y}^{\prime}=$ distance from neutral axis to area centroid.

- Timoshenko, S. \& Gleason H. MacCullough, Elements of Strength of Materials, ©1949 by K. Van Nostrand Co. Used with permission from Wadsworth Publishing Co.

Deflection of Beams

Using $1 / \rho=M /(E I)$,
$E I \frac{d^{2} y}{d x^{2}}=M$, differential equation of deflection curve
$E I \frac{d^{3} y}{d x^{3}}=d M(x) / d x=V$
$E I \frac{d^{4} y}{d x^{4}}=d V(x) / d x=-q$
Determine the deflection curve equation by double integration (apply boundary conditions applicable to the deflection and/or slope).

$$
\begin{aligned}
& E I(d y / d x)=\int M(x) d x \\
& E I y=\int\left[\int M(x) d x\right] d x
\end{aligned}
$$

The constants of integration can be determined from the physical geometry of the beam.

COLUMNS

For long columns with pinned ends:
Euler's Formula

$$
P_{c r}=\frac{\pi^{2} E I}{\ell^{2}}
$$

$P_{\text {cr }}=$ critical axial loading,
$\ell=$ unbraced column length.
substitute $I=\mathrm{r}^{2} \mathrm{~A}$:

$$
\frac{P_{c r}}{A}=\frac{\pi^{2} E}{(\ell / r)^{2}}
$$

where
$\mathrm{r}=$ radius of gyration and
$\ell r=$ slenderness ratio for the column.
For further column design theory, see the CIVIL ENGINEERING and MECHANICAL ENGINEERING sections.

ELASTIC STRAIN ENERGY

If the strain remains within the elastic limit, the work done during deflection (extension) of a member will be transformed into potential energy and can be recovered.
If the final load is P and the corresponding elongation of a tension member is δ, then the total energy U stored is equal to the work W done during loading.

The strain energy per unit volume is

$$
\begin{equation*}
u=U / A L=\sigma^{2} / 2 E \tag{fortension}
\end{equation*}
$$

MATERIAL PROPERTIES

Material		$\begin{aligned} & \overline{\#} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$		E	空
Modulus of Elasticity, E	Mpsi	30.0	10.0	14.5	1.6
	GPa	207.0	69.0	100.0	11.0
Modulus of Rigidity, G	Mpsi	11.5	3.8	6.0	0.6
	GPa	80.0	26.0	41.4	4.1
Poisson's Ratio, v		0.30	0.33	0.21	0.33

(δ is positive downward)

	$\begin{aligned} & \delta=\frac{P a^{2}}{6 E I}(3 x-a), \text { for } x>a \\ & \delta=\frac{P x^{2}}{6 E I}(-x+3 a), \text { for } x \leq a \end{aligned}$	$\delta_{\max }=\frac{P a^{2}}{6 E I}(3 L-a)$	$\phi_{\max }=\frac{P a^{2}}{2 E I}$
y) w_{0} LOAD PER UNIT LENGTH	$\delta=\frac{w_{o} x^{2}}{24 E I}\left(x^{2}+6 L^{2}-4 L x\right)$	$\delta_{\max }=\frac{w_{o} L^{4}}{8 E I}$	$\phi_{\max }=\frac{w_{o} L^{3}}{6 E I}$
	$\delta=\frac{M_{o} x^{2}}{2 E I}$	$\delta_{\max }=\frac{M_{o} L^{2}}{2 E I}$	$\phi_{\max }=\frac{M_{o} L}{E I}$
	$\begin{aligned} & \delta=\frac{P b}{6 L E I}\left[\frac{L}{b}(x-a)^{3}-x^{3}+\left(L^{2}-b^{2}\right) x\right], \text { for } x>a \\ & \delta=\frac{P b}{6 L E I}\left[-x^{3}+\left(L^{2}-b^{2}\right) x\right], \text { for } x \leq a \end{aligned}$	$\begin{aligned} \delta_{\max }= & \frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I} \\ & \text { at } x=\sqrt{\frac{L^{2}-b^{2}}{3}} \end{aligned}$	$\begin{aligned} & \phi_{1}=\frac{\operatorname{Pab}(2 L-a)}{6 L E I} \\ & \phi_{2}=\frac{\operatorname{Pab}(2 L-b)}{6 L E I} \end{aligned}$
$R_{I}=w_{0} L / 2$ $R_{2}=w_{0} L / 2$	$\delta=\frac{w_{o} x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)$	$\delta_{\max }=\frac{5 w_{o} L^{4}}{384 E I}$	$\phi_{1}=\phi_{2}=\frac{w_{o} L^{3}}{24 E I}$
	$\delta=\frac{M_{o} L x}{6 E I}\left(1-\frac{x^{2}}{L^{2}}\right)$	$\begin{aligned} \delta_{\max }= & \frac{M_{o} L^{2}}{9 \sqrt{3} E I} \\ & \text { at } x=\frac{L}{\sqrt{3}} \end{aligned}$	$\begin{aligned} \phi_{1} & =\frac{M_{o} L}{6 E I} \\ \phi_{2} & =\frac{M_{o} L}{3 E I} \end{aligned}$

Crandall, S.H. \& N.C. Dahl, An Introduction to The Mechanics of Solids, Copyright © 1959 by the McGraw-Hill Book Co., Inc. Table reprinted with permission from McGraw-Hill.

FLUID MECHANICS

DENSITY, SPECIFIC VOLUME, SPECIFIC WEIGHT, AND SPECIFIC GRAVITY

The definitions of density, specific volume, specific weight, and specific gravity follow:
also

$$
\begin{array}{ll}
\rho=\operatorname{limit}_{\Delta V \rightarrow 0} & \Delta m / \Delta V \\
\gamma=\operatorname{limita}_{\Delta V \rightarrow 0} & \Delta W / \Delta V
\end{array}
$$

$$
\gamma=\operatorname{limit}_{\Delta V \rightarrow 0} \quad g \cdot \Delta m / \Delta V=\rho g
$$

$$
S G=\gamma / \gamma_{w}=\rho / \rho_{w}, \quad \text { where }
$$

$\rho \quad=$ density (also mass density),
$\Delta m=$ mass of infinitesimal volume,
$\Delta V=$ volume of infinitesimal object considered,
$\gamma=$ specific weight,
$\Delta W=$ weight of an infinitesimal volume,
$S G=$ specific gravity, and
$\rho_{w}=$ mass density of water at standard conditions $=1,000$ $\mathrm{kg} / \mathrm{m}^{3}\left(62.43 \mathrm{lbm} / \mathrm{ft}^{3}\right)$.

STRESS, PRESSURE, AND VISCOSITY

Stress is defined as

$$
\tau(P)=\operatorname{limit}_{\Delta A \rightarrow 0} \quad \Delta F / \Delta A, \quad \text { where }
$$

$\tau(P)=$ surface stress vector at point P,
$\Delta F=$ force acting on infinitesimal area ΔA,
$\Delta A=$ infinitesimal area at point P, and

$$
\tau_{n}=-p
$$

$$
\tau_{t}=\mu(d V / d y) \quad \text { (one-dimensional; i.e., } y \text {) }
$$

where
τ_{n} and $\tau_{t}=$ the normal and tangential stress components at point P,
$p \quad=$ the pressure at point P,
$\mu \quad=$ absolute dynamic viscosity of the fluid

$$
\mathrm{N} \cdot \mathrm{~s} / \mathrm{m}^{2}[\mathrm{lbm} /(\mathrm{ft}-\mathrm{sec})],
$$

$d \mathrm{v} \quad=$ velocity at boundary condition, and
dy $\quad=$ normal distance, measured from boundary.
$v \quad=\mu / \rho$, where
$v \quad=$ kinematic viscosity; $\mathrm{m}^{2} / \mathrm{s}\left(\mathrm{ft}^{2} / \mathrm{sec}\right)$.
For a thin Newtonian fluid film and a linear velocity profile,

$$
v(y)=V y / \delta ; d v / d y=V / \delta, \text { where }
$$

$V=$ velocity of plate on film and
$\delta=$ thickness of fluid film.
For a power law (non-Newtonian) fluid

$$
\tau_{t}=K(d v / d y)^{n} \text {, where }
$$

$K=$ consistency index and
$n=$ power law index
$n<1 \equiv$ pseudo plastic
$n>1 \equiv$ dilatant

SURFACE TENSION AND CAPILLARITY

Surface tension σ is the force per unit contact length
$\sigma=F / L$, where
$\sigma=$ surface tension, force/length,
$F=$ surface force at the interface, and
$L=$ length of interface.
The capillary rise h is approximated by
$h=4 \sigma \cos \beta /(\gamma d)$, where
$h=$ the height of the liquid in the vertical tube,
$\sigma=$ the surface tension,
$\beta=$ the angle made by the liquid with the wetted tube wall,
$\gamma=$ specific weight of the liquid, and
$d=$ the diameter or the capillary tube.

THE PRESSURE FIELD IN A STATIC LIQUID AND MANOMETRY

-

The difference in pressure between two different points is

$$
p_{2}-p_{1}=-\gamma\left(z_{2}-z_{1}\right)=\gamma h
$$

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, Copyright © 1980 by John Wiley \& Sons, Inc. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.

For a simple manometer,

$$
p_{\mathrm{o}}=p_{2}+\gamma_{2} h_{2}-\gamma_{1} h_{1}
$$

Absolute pressure $=$ atmospheric pressure + gage pressure reading
Absolute pressure $=$ atmospheric pressure - vacuum gage pressure reading

Another device that works on the same principle as the manometer is the simple barometer.

$$
p_{\mathrm{atm}}=p_{A}=p_{v}+\gamma h=p_{B}+\gamma h
$$

-

$p_{v}=$ vapor pressure of the barometer fluid

FORCES ON SUBMERGED SURFACES AND THE CENTER OF PRESSURE

Forces on a submerged plane wall. (a) Submerged plane surface. (b) Pressure distribution.
The pressure on a point at a distance Z^{\prime} below the surface is

$$
p=p_{\mathrm{o}}+\gamma Z^{\prime}, \text { for } Z^{\prime} \geq 0
$$

If the tank were open to the atmosphere, the effects of $p_{\text {o }}$ could be ignored.
The coordinates of the center of pressure $C P$ are

$$
\begin{aligned}
& y^{*}=\left(\gamma I_{y_{c_{c}}} \sin \alpha\right) /\left(p_{c} A\right) \quad \text { and } \\
& z^{*}=\left(\gamma I_{y_{c}} \sin \alpha\right) /\left(p_{c} A\right) \text { where }
\end{aligned}
$$

$y^{*}=$ the y-distance from the centroid (C) of area (A) to the center of pressure,
$z^{*}=$ the z-distance from the centroid (C) of area (A) to the center of pressure,
$I_{y_{c}}$ and $I_{y_{c} z_{c}}=$ the moment and product of inertia of the area,
$p_{c}=$ the pressure at the centroid of area (A), and
$Z_{c}=$ the slant distance from the water surface to the centroid (C) of area (A).

If the free surface is open to the atmosphere, then
$p_{o}=0$ and $p_{c}=\gamma Z_{c} \sin \alpha$.

$$
y^{*}=I_{y_{c} z_{c}} /\left(A Z_{c}\right) \quad \text { and } \quad z^{*}=I_{y_{c}} /\left(A Z_{c}\right)
$$

The force on the plate can be computed as

$$
\boldsymbol{F}=\left[p_{1} A_{v}+\left(p_{2}-p_{1}\right) A_{v} / 2\right] \mathbf{i}+V_{f} \gamma_{f} \mathbf{j}, \text { where }
$$

$\boldsymbol{F}=$ force on the plate,
$p_{1}=$ pressure at the top edge of the plate area,
$p_{2}=$ pressure at the bottom edge of the plate area,
$A_{v}=$ vertical projection of the plate area,
$V_{f}=$ volume of column of fluid above plate, and
$\gamma_{f}=$ specific weight of the fluid.

ARCHIMEDES' PRINCIPLE AND BUOYANCY

1. The buoyant force exerted on a submerged or floating body is equal to the weight of the fluid displaced by the body.
2. A floating body displaces a weight of fluid equal to its own weight; i.e., a floating body is in equilibrium.
The center of buoyancy is located at the centroid of the submerged portion of the body.
In the case of a body lying at the interface of two immiscible fluids, the buoyant force equals the sum of the weights of the fluids displaced by the body.

ONE-DIMENSIONAL FLOWS

The Continuity Equation So long as the flow Q is continuous, the continuity equation, as applied to onedimensional flows, states that the flow passing two points (1 and 2) in a stream is equal at each point, $A_{1} V_{1}=A_{2} V_{2}$.

$$
\begin{aligned}
& Q=A V \\
& \dot{m}=\rho Q=\rho A V, \text { where }
\end{aligned}
$$

$Q=$ volumetric flow rate,
$\dot{m}=$ mass flow rate,

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, Copyright © 1980 by John Wiley \& Sons, Inc. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.
$A=$ cross section of area of flow,
$V=$ average flow velocity, and
$\rho=$ the fluid density.
For steady, one-dimensional flow, \dot{m} is a constant. If, in addition, the density is constant, then Q is constant.
The Field Equation is derived when the energy equation is applied to one-dimensional flows.

Assuming no friction losses and that no pump or turbine exists between sections 1 and 2 in the system,

$$
\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}=\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}, \quad \text { where }
$$

$p_{1}, p_{2}=$ pressure at sections 1 and 2 ,
$V_{1}, V_{2}=$ average velocity of the fluid at the sections,
$z_{1}, z_{2}=$ the vertical distance from a datum to the sections (the potential energy),
$\gamma \quad=$ the specific weight of the fluid, and
$g \quad=$ the acceleration of gravity.

FLOW OF A REAL FLUID

$$
\frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{f}
$$

The pressure drop as fluid flows through a pipe of constant cross-section and which is held at a fixed elevation is

$$
h_{f}=\left(p_{1}-p_{2}\right) / \gamma, \text { where }
$$

$h_{f}=$ the head loss, considered a friction effect, and all remaining terms are defined above.

Fluid Flow

The velocity distribution for laminar flow in circular tubes or between planes is

$$
\mathrm{v}=\mathrm{v}_{\max }\left[1-\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{2}\right], \quad \text { where }
$$

$r=$ the distance (m) from the centerline,
$R=$ the radius (m) of the tube or half the distance between the parallel planes,
$v=$ the local velocity $(\mathrm{m} / \mathrm{s})$ at r, and
$v_{\max }=$ the velocity $(\mathrm{m} / \mathrm{s})$ at the centerline of the duct.
$v_{\text {max }}=1.18 \mathrm{~V}$, for fully turbulent flow
($\operatorname{Re}>10,000$),
$v_{\max }=2 \mathrm{~V}$, for circular tubes and
$v_{\text {max }}=1.5 \mathrm{~V}$, for parallel planes, where
$V=$ the average velocity $(\mathrm{m} / \mathrm{s})$ in the duct.
The shear stress distribution is

$$
\frac{\tau}{\tau_{w}}=\frac{r}{R}, \quad \text { where }
$$

τ and τ_{w} are the shear stresses at radii r and R respectively.

The drag force F_{D} on objects immersed in a large body of flowing fluid or objects moving through a stagnant fluid is
$F_{D}=\frac{C_{D} \rho V^{2} A}{2}$
$C_{D}=$ the drag coefficient (see page 46),
$V=$ the velocity (m / s) of the undisturbed fluid, and
$A=$ the projected area $\left(\mathrm{m}^{2}\right)$ of bluff objects such as spheres, ellipsoids, and disks and plates, cylinders, ellipses, and air foils with axes perpendicular to the flow.

For flat plates placed parallel with the flow

$$
\begin{aligned}
& C_{D}=1.33 / \operatorname{Re}^{0.5}\left(10^{4}<\operatorname{Re}<5 \times 10^{5}\right) \\
& C_{D}=0.031 / \operatorname{Re}^{1 / 7}\left(10^{6}<\operatorname{Re}<10^{9}\right)
\end{aligned}
$$

The characteristic length in the Reynolds Number (Re) is the length of the plate parallel with the flow. For bluff objects, the characteristic length is the largest linear dimension (diameter of cylinder, sphere, disk, etc.) which is perpendicular to the flow.

Reynolds Number

$$
\begin{aligned}
& \operatorname{Re}=V D \rho / \mu=V D / v \\
& \operatorname{Re}^{\prime}=\frac{V^{(2-n)} D^{n} \rho}{K\left(\frac{3 n+1}{4 n}\right)^{n} 8^{(n-1)}}, \quad \text { where }
\end{aligned}
$$

$\rho=$ the mass density,
$D=$ the diameter of the pipe or dimension of the fluid streamline,
$\mu=$ the dynamic viscosity,
$v=$ the kinematic viscosity,
$\mathrm{Re}=$ the Reynolds number (Newtonian fluid),
$\operatorname{Re}^{\prime}=$ the Reynolds number (Power law fluid), and
K and n are defined on page 38 .
The critical Reynolds number $(\mathrm{Re})_{c}$ is defined to be the minimum Reynolds number at which a flow will turn turbulent.

Hydraulic Gradient (Grade Line)

The hydraulic gradient (grade line) is defined as an imaginary line above a pipe so that the vertical distance from the pipe axis to the line represents the pressure head at that point. If a row of piezometers were placed at intervals along the pipe, the grade line would join the water levels in the piezometer water columns.

Energy Line (Bernoulli Equation)

The Bernoulli equation states that the sum of the pressure, velocity, and elevation heads is constant. The energy line is this sum or the "total head line" above a horizontal datum.

The difference between the hydraulic grade line and the energy line is the $V^{2} / 2 g$ term.

STEADY, INCOMPRESSIBLE FLOW IN CONDUITS AND PIPES

The energy equation for incompressible flow is

$$
\frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{f}
$$

If the cross-sectional area and the elevation of the pipe are the same at both sections (1 and 2), then $z_{1}=z_{2}$ and $V_{1}=V_{2}$. The pressure drop $p_{1}-p_{2}$ is given by the following:

$$
p_{1}-p_{2}=\gamma h_{f}
$$

The Darcy equation is

$$
h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g}, \quad \text { where }
$$

$f=\mathrm{f}(\mathrm{Re}, e / D)$, the friction factor,
$D=$ diameter of the pipe,
$L=$ length over which the pressure drop occurs,
$e=$ roughness factor for the pipe, and all other symbols are defined as before.

A chart that gives f versus Re for various values of e / D, known as a Moody or Stanton diagram, is available at the end of this section on page 45 .

Friction Factor for Laminar Flow

The equation for Q in terms of the pressure drop Δp_{f} is the Hagen-Poiseuille equation. This relation is valid only for flow in the laminar region.

$$
Q=\frac{\pi R^{4} \Delta p_{f}}{8 \mu L}=\frac{\pi D^{4} \Delta p_{f}}{128 \mu L}
$$

Flow in Noncircular Conduits

Analysis of flow in conduits having a noncircular cross section uses the hydraulic diameter D_{H}, or the hydraulic radius R_{H}, as follows

$$
R_{H}=\frac{\text { cross }- \text { sectional area }}{\text { wetted perimeter }}=\frac{D_{H}}{4}
$$

Minor Losses in Pipe Fittings, Contractions, and Expansions

Head losses also occur as the fluid flows through pipe fittings (i.e., elbows, valves, couplings, etc.) and sudden pipe contractions and expansions.

$$
\frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{f}+h_{f, \text { fitting }}
$$

where

$$
h_{f, \text { fitting }}=C \frac{V^{2}}{2 g}
$$

Specific fittings have characteristic values of C, which will be provided in the problem statement. A generally accepted nominal value for head loss in well-streamlined gradual contractions is

$$
h_{f, \text { fitting }}=0.04 V^{2} / 2 g
$$

The head loss at either an entrance or exit of a pipe from or to a reservoir is also given by the $h_{f \text {, fitting }}$ equation. Values for C for various cases are shown as follows.

PUMP POWER EQUATION

$$
\dot{W}=Q \gamma h / \eta, \text { where }
$$

$Q=$ quantity of flow $\left(\mathrm{m}^{3} / \mathrm{s}\right.$ or cfs$)$,
$h=$ head (m or ft) the fluid has to be lifted,
$\eta=$ efficiency, and
$\dot{W}=$ power (watts or $\mathrm{ft}-\mathrm{lbf} / \mathrm{sec}$).

THE IMPULSE-MOMENTUM PRINCIPLE

The resultant force in a given direction acting on the fluid equals the rate of change of momentum of the fluid.

$$
\Sigma \boldsymbol{F}=Q_{2} \rho_{2} \boldsymbol{V}_{2}-Q_{1} \rho_{1} \boldsymbol{V}_{1}, \text { where }
$$

$\Sigma \boldsymbol{F} \quad=$ the resultant of all external forces acting on the control volume,
$Q_{1} \rho_{1} V_{1}=$ the rate of momentum of the fluid flow entering the control volume in the same direction of the force, and
$Q_{2} \rho_{2} \boldsymbol{V}_{2}=$ the rate of momentum of the fluid flow leaving the control volume in the same direction of the force.

Pipe Bends, Enlargements, and Contractions

The force exerted by a flowing fluid on a bend, enlargement, or contraction in a pipe line may be computed using the impulse-momentum principle.

$p_{1} A_{1}-p_{2} A_{2} \cos \alpha-F_{x}=Q \rho\left(V_{2} \cos \alpha-V_{1}\right)$
$F_{y}-W-p_{2} A_{2} \sin \alpha=Q \rho\left(V_{2} \sin \alpha-0\right)$, where
$\boldsymbol{F}=$ the force exerted by the bend on the fluid (the force exerted by the fluid on the bend is equal in magnitude and opposite in sign), F_{x} and F_{y} are the x-component and y-component of the force,

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, Copyright © 1980 by John Wiley \& sons, Inc. Diagram reprinted by permission of William Bober \& Richard A. Kenyon.
- Vennard, J.K., Elementary Fluid Mechanics, Copyright © 1954 by J.K. Vennard. Diagrams reprinted by permission of John Wiley \& Sons, Inc.
$p=$ the internal pressure in the pipe line,
$A=$ the cross-sectional area of the pipe line,
$W=$ the weight of the fluid,
$V=$ the velocity of the fluid flow,
$\alpha=$ the angle the pipe bend makes with the horizontal,
$\rho=$ the density of the fluid, and
$Q=$ the quantity of fluid flow.
Jet Propulsion

$$
F=Q \rho\left(V_{2}-0\right)
$$

$F=2 \gamma h A_{2}$, where
$F=$ the propulsive force,
$\gamma=$ the specific weight of the fluid,
$h=$ the height of the fluid above the outlet,
$A_{2}=$ the area of the nozzle tip,
$Q=A_{2} \sqrt{2 g h}$, and
$V_{2}=\sqrt{2 g h}$

Deflectors and Blades

FIXED BLADE

$$
\begin{aligned}
-F_{x} & =Q \rho\left(V_{2} \cos \alpha-V_{1}\right) \\
F_{y} & =Q \rho\left(V_{2} \sin \alpha-0\right)
\end{aligned}
$$

MOVING BLADE

$$
\begin{aligned}
-F_{x}= & Q \rho\left(V_{2 x}-V_{1 x}\right) \\
& =-Q \rho\left(V_{1}-v\right)(1-\cos \alpha) \\
F_{y}= & Q \rho\left(V_{2 y}-V_{1 y}\right) \\
& =+Q \rho\left(V_{1}-v\right) \sin \alpha, \text { where }
\end{aligned}
$$

$v=$ the velocity of the blade.

IMPULSE TURBINE

-

$$
\dot{W}=Q \rho\left(V_{1}-v\right)(1-\cos \alpha) v, \text { where }
$$

$\dot{W}=$ power of the turbine.

$$
\dot{W}_{\max }=Q \rho\left(V_{1}^{2} / 4\right)(1-\cos \alpha)
$$

When $\alpha=180^{\circ}$,

$$
\dot{W}_{\max }=\left(Q \rho V_{1}^{2}\right) / 2=\left(Q \gamma V_{1}^{2}\right) / 2 g
$$

MULTIPATH PIPELINE PROBLEMS

The same head loss occurs in each branch as in the combination of the two. The following equations may be solved simultaneously for V_{A} and V_{B} :

$$
\begin{aligned}
& h_{L}=f_{A} \frac{l_{A}}{D_{A}} \frac{V_{A}^{2}}{2 g}=f_{B} \frac{l_{B}}{D_{B}} \frac{V_{B}^{2}}{2 g} \\
& \left(\pi D^{2} / 4\right) V=\left(\pi D_{A}^{2} / 4\right) V_{A}+\left(\pi D_{B}^{2} / 4\right) V_{B}
\end{aligned}
$$

The flow Q can be divided into Q_{A} and Q_{B} when the pipe characteristics are known.

OPEN-CHANNEL FLOW AND/OR PIPE FLOW

Manning's Equation

$$
V=(\mathrm{k} / n) R^{2 / 3} S^{1 / 2} \text {, where }
$$

$\mathrm{k}=1$ for SI units
$\mathrm{k}=1.486$ for USCS units
$V=$ velocity (m / s, $\mathrm{ft} / \mathrm{sec}$),
$n=$ roughness coefficient,
$R=$ hydraulic radius (m, ft), and
$S=$ slope of energy grade line ($\mathrm{m} / \mathrm{m}, \mathrm{ft} / \mathrm{ft}$).

Hazen-Williams Equation

$V=\mathrm{k}_{1} C R^{0.63} S^{0.54}$, where
$C=$ roughness coefficient
$\mathrm{k}_{1}=0.849$ for SI units
$k_{1}=1.318$ for USCS units
Other terms defined as above.

- Vennard, J.K., Elementary Fluid Mechanics, Copyright © 1954 by J.K. Vennard. Diagrams reprinted by permission of John Wiley \& Sons, Inc.

MACH NUMBER

The speed of sound c in an ideal gas is given by

$$
c=\sqrt{k R T} \text {, where }
$$

$k=c_{P} / c_{v}$.
This shows that the acoustic velocity in an ideal gas depends only on its temperature.

The mach number Ma is a ratio of the fluid velocity V to the speed of sound:

$$
\mathrm{Ma}=V / c
$$

FLUID MEASUREMENTS

The Pitot Tube - From the stagnation pressure equation for an incompressible fluid,

$$
V=\sqrt{(2 / \rho)\left(p_{o}-p_{s}\right)}=\sqrt{2 g\left(p_{o}-p_{s}\right) / \gamma}
$$

where
$V=$ the velocity of the fluid,
$p_{0}=$ the stagnation pressure, and
$p_{s}=$ the static pressure of the fluid at the elevation where the measurement is taken.
-

For a compressible fluid, use the above incompressible fluid equation if the mach number ≤ 0.3.

Venturi Meters

$$
Q=\frac{C_{v} A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}
$$

where, $C_{v}=$ the coefficient of velocity.
The above equation is for incompressible fluids.

Orifices The cross-sectional area at the vena contracta A_{2} is characterized by a coefficient of contraction C_{c} and given by $C_{c} A$.
-

$$
Q=C A \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}
$$

where C, the coefficient of the meter, is given by

$$
C=\frac{C_{v} C_{c}}{\sqrt{1-C_{c}^{2}\left(A / A_{1}\right)^{2}}}
$$

ORIFICES AND THEIR NOMINAL COEFFICIENTS					
	SHARP EDGED	ROUNDED	SHORT TUBE	BORDA	

Submerged Orifice operating under steady-flow conditions:

- Q

$$
\begin{aligned}
Q & =A_{2} V_{2}=C_{c} C_{v} A \sqrt{2 g\left(h_{1}-h_{2}\right)} \\
& =C A \sqrt{2 g\left(h_{1}-h_{2}\right)}
\end{aligned}
$$

in which the product of C_{c} and C_{v} is defined as the coefficient of discharge of the orifice.

- Vennard, J.K., Elementary Fluid Mechanics, Copyright © 1954 by J.K. Vennard. Diagrams reprinted by permission of John Wiley \& Sons, Inc

Orifice Discharging Freely Into Atmosphere

-

in which h is measured from the liquid surface to the centroid of the orifice opening.

DIMENSIONAL HOMOGENEITY AND DIMENSIONAL ANALYSIS

Equations that are in a form that do not depend on the fundamental units of measurement are called dimensionally homogeneous equations. A special form of the dimensionally homogeneous equation is one that involves only dimensionless groups of terms.
Buckingham's Theorem: The number of independent dimensionless groups that may be employed to describe a phenomenon known to involve n variables is equal to the number ($n-\overline{\mathrm{r}}$), where $\overline{\mathrm{r}}$ is the number of basic dimensions (i.e., $\mathrm{M}, \mathrm{L}, \mathrm{T}$) needed to express the variables dimensionally.

SIMILITUDE

In order to use a model to simulate the conditions of the prototype, the model must be geometrically, kinematically, and dynamically similar to the prototype system.
To obtain dynamic similarity between two flow pictures, all independent force ratios that can be written must be the same in both the model and the prototype. Thus, dynamic similarity between two flow pictures (when all possible forces are acting) is expressed in the five simultaneous equations below.
$\left[\frac{F_{I}}{F_{p}}\right]_{p}=\left[\frac{F_{I}}{F_{p}}\right]_{m}=\left[\frac{\rho V^{2}}{p}\right]_{p}=\left[\frac{\rho V^{2}}{p}\right]_{m}$
$\left[\frac{F_{I}}{F_{V}}\right]_{p}=\left[\frac{F_{I}}{F_{V}}\right]_{m}=\left[\frac{V l \rho}{\mu}\right]_{p}=\left[\frac{V l \rho}{\mu}\right]_{m}=[\operatorname{Re}]_{p}=[\mathrm{Re}]_{m}$
$\left[\frac{F_{I}}{F_{G}}\right]_{p}=\left[\frac{F_{I}}{F_{G}}\right]_{m}=\left[\frac{V^{2}}{l g}\right]_{p}=\left[\frac{V^{2}}{l g}\right]_{m}=[\mathrm{Fr}]_{p}=[\mathrm{Fr}]_{m}$
$\left[\frac{F_{I}}{F_{E}}\right]_{p}=\left[\frac{F_{I}}{F_{E}}\right]_{m}=\left[\frac{\rho V^{2}}{E}\right]_{p}=\left[\frac{\rho V^{2}}{E}\right]_{m}=[\mathrm{Ca}]_{p}=[\mathrm{Ca}]_{m}$
$\left[\frac{F_{I}}{F_{T}}\right]_{p}=\left[\frac{F_{I}}{F_{T}}\right]_{m}=\left[\frac{\rho l V^{2}}{\sigma}\right]_{p}=\left[\frac{\rho l V^{2}}{\sigma}\right]_{m}=[\mathrm{We}]_{p}=[\mathrm{We}]_{m}$
where
the subscripts p and m stand for prototype and model respectively, and
$F_{I}=$ inertia force,
$F_{P}=$ pressure force,
$F_{V}=$ viscous force,
$F_{G}=$ gravity force,
$F_{E}=$ elastic force,
$F_{T}=$ surface tension force,
Re $=$ Reynolds number,
$\mathrm{We}=$ Weber number,
$\mathrm{Ca}=$ Cauchy number,
$\mathrm{Fr}=$ Froude number,
$l=$ characteristic length,
$V=$ velocity,
$\rho=$ density,
$\sigma=$ surface tension,
$E=$ modulus of elasticity,
$\mu=$ dynamic viscosity,
$p=$ pressure, and
$g=$ acceleration of gravity.
$\operatorname{Re}=\frac{V D \rho}{\mu}=\frac{V D}{v}$
PROPERTIES OF WATER ${ }^{f}$

0	9.805	999.8	1.781	1.785	0.61
5	9.807	1000.0	1.518	1.518	0.87
10	9.804	999.7	1.307	1.306	1.23
15	9.798	999.1	1.139	1.139	1.70
20	9.789	998.2	1.002	1.003	2.34
25	9.777	997.0	0.890	0.893	3.17
30	9.764	995.7	0.798	0.800	4.24
40	9.730	992.2	0.653	0.658	7.38
50	9.689	988.0	0.547	0.553	12.33
60	9.642	983.2	0.466	0.474	19.92
70	9.589	977.8	0.404	0.413	31.16
80	9.530	971.8	0.354	0.364	47.34
90	9.466	965.3	0.315	0.326	70.10
100	9.399	958.4	0.282	0.294	101.33

${ }^{\text {a}}$ From "Hydraulic Models," A.S.C.E. Manual of Engineering Practice, No. 25, A.S.C.E., 1942. See footnote 2.

${ }^{\mathrm{f}}$ Compiled from many sources including those indicated, Handbook of Chemistry and Physics, 54th Ed., The CRC Press, 1973, and Handbook of Tables for Applied Engineering Science, The Chemical Rubber Co., 1970.
${ }^{2}$ Here, if $\mathrm{E} / 10^{6}=1.98$ then $\mathrm{E}=1.98 \times 10^{6} \mathrm{kPa}$, while if $\mu \times 10^{3}=1.781$, then $\mu=1.781 \times 10^{-3} \mathrm{~Pa}$'s, and so on.
Vennard, J.K. and Robert L. Street, Elementary Fluid Mechanics, Copyright 1954, John Wiley \& Sons, Inc.

- Vennard, J.K., Elementary Fluid Mechanics, Copyright © 1954 by J.K. Vennard. Diagrams reprinted
by permission of John Wiley \& Sons, Inc

MOODY (STANTON) DIAGRAM

Reprinted by permission of ASHRAE.

$e,(\mathrm{ft})$	$e,(\mathrm{~mm})$
$0.003-0.03$	$0.9-9.0$
$0.001-0.01$	$0.3-3.0$
0.00085	0.25
0.0005	0.15
0.00015	0.046
0.000005	0.0015

THERMODYNAMICS

PROPERTIES OF SINGLE-COMPONENT SYSTEMS

Nomenclature

Intensive properties are independent of mass.
2. Extensive properties are proportional to mass.
3. Specific properties are lower case (extensive/mass).

State Functions (properties)

Absolute Pressure, p
($\mathrm{lbf} / \mathrm{in}^{2}$ or Pa)
Absolute Temperature, T
Specific Volume, v
Internal Energy, u
Enthalpy, $h=u+P v$
(${ }^{\circ} \mathrm{R}$ or K)
($\mathrm{ft}^{3} / \mathrm{lbm}$ or $\mathrm{m}^{3} / \mathrm{kg}$)
(usually in Btu/lbm or $\mathrm{kJ} / \mathrm{kg}$)
(same units as u)
Entropy, s
[in Btu/(lbm- $\left.{ }^{\circ} \mathrm{R}\right)$ or $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$]
Gibbs Free Energy, $g=h-T s$ (same units as u)
Helmholz Free Energy, $a=u-T s$ (same units as u)
Heat Capacity at Constant Pressure, $c_{p}=\left(\frac{\partial h}{\partial T}\right)_{P}$
Heat Capacity at Constant Volume, $\quad c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}$
Quality x (applies to liquid-vapor systems at saturation) is defined as the mass fraction of the vapor phase:

$$
x=m_{g} /\left(m_{g}+m_{f}\right) \text {, where }
$$

$m_{g}=$ mass of vapor and
$m_{f}=$ mass of liquid.
Specific volume of a two-phase system can be written:
$v=x v_{g}+(1-x) v_{f} \quad$ or $\quad v=x v_{f g}+v_{f}$, where
$v_{f}=$ specific volume of saturated liquid,
$v_{g}=$ specific volume of saturated vapor, and
$v_{f g}=$ specific volume change upon vaporization

$$
=v_{g}-v_{f}
$$

Similar expressions exist for u, h, and s :

$$
\begin{aligned}
u & =x u_{g}+(1-x) u_{f} \\
h & =x h_{g}+(1-x) h_{f}+ \\
s & =x s_{g}+(1-x) s_{f}
\end{aligned}
$$

For a simple substance, specification of any two intensive, independent properties is sufficient to fix all the rest.
For an ideal gas, $P v=R T$ or $P V=m R T$, and

$$
P_{1} v_{1} / T_{1}=P_{2} v_{2} / T_{2} \text {, where }
$$

$p=$ pressure,
$v=$ specific volume ,
$m=$ mass of gas,
$R=$ gas constant, and
$T=$ temperature.
R is specific to each gas but can be found from

$$
R=\frac{\bar{R}}{(\text { mol. wt.) }}, \quad \text { where }
$$

$\bar{R}=$ the universal gas constant

$$
=1,545 \mathrm{ft}-\mathrm{lbf} /\left(\mathrm{lbmol}-{ }^{\circ} \mathrm{R}\right)=8,314 \mathrm{~J} /(\mathrm{kmol} \cdot \mathrm{~K}) .
$$

For Ideal Gases, $c_{P}-c_{v}=R$
Also, for Ideal Gases:

$$
\left(\frac{\partial h}{\partial p}\right)_{T}=0 \quad\left(\frac{\partial u}{\partial p}\right)_{T}=0
$$

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:

$$
\begin{aligned}
& \Delta u=c_{v} \Delta T ; \quad \Delta h=c_{P} \Delta T \\
& \Delta s=c_{P} \ln \left(T_{2} / T_{1}\right)-R \ln \left(P_{2} / P_{1}\right) ; \text { and } \\
& \Delta s=c_{v} \ln \left(T_{2} / T_{1}\right)+R \ln \left(v_{2} / v_{1}\right) .
\end{aligned}
$$

For heat capacities that are temperature dependent, the value to be used in the above equations for $\Delta \mathrm{h}$ is know as the mean heat capacity $\left(\bar{c}_{p}\right)$ and is given by

$$
\bar{c}_{p}=\frac{\int_{T_{1}}^{T_{2}} c_{p} d T}{T_{2}-T_{1}}
$$

Also, for constant entropy processes:

$$
\begin{aligned}
& P_{1} v_{1}{ }^{k}=P_{2} v_{2}{ }^{k} ; \quad T_{1} P_{1}{ }^{(1-k) / k}=T_{2} P_{2}^{(1-k) k} \\
& T_{1} v_{1}{ }^{(k-1)}=T_{2} v_{2}{ }^{(k-1)}, \text { where } k=c_{p} / c_{v}
\end{aligned}
$$

FIRST LAW OF THERMODYNAMICS

The First Law of Thermodynamics is a statement of conservation of energy in a thermodynamic system. The net energy crossing the system boundary is equal to the change in energy inside the system.
Heat Q is energy transferred due to temperature difference and is considered positive if it is inward or added to the system.

Closed Thermodynamic System

(no mass crosses boundary)

$$
Q-w=\Delta U+\Delta \mathrm{KE}+\Delta \mathrm{PE}
$$

where
$\triangle K E=$ change in kinetic energy
$\triangle P E=$ change in potential energy
Energy can cross the boundary only in the form of heat or work. Work can be boundary work, w_{b}, or other work forms (electrical work, etc.)
Work w is considered positive if it is outward or work done by the system.
Reversible boundary work is given by $w_{\mathrm{b}}=\int P d v$.

SPECIAL CASES OF CLOSED SYSTEMS

Constant Pressure (Charles' Law):

$$
w_{b}=P \Delta v
$$

(ideal gas) $T / v=$ constant
Constant Volume:

$$
w_{\mathrm{b}}=0
$$

(ideal gas) $T / P=$ constant
Isentropic (ideal gas),

$$
\begin{array}{r}
P v^{k}=\text { constant: } \\
w=\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-k) \\
=R\left(T_{2}-T_{1}\right) /(1-k)
\end{array}
$$

Constant Temperature (Boyle's Law):
(ideal gas) $P v=$ constant

$$
w_{\mathrm{b}}=R T \ln \left(v_{2} / v_{1}\right)=R T \ln \left(P_{1} / P_{2}\right)
$$

Polytropic (ideal gas),
$P v^{n}=$ constant:

$$
w=\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-n)
$$

Open Thermodynamic System

(allowing mass to cross the boundary)
There is flow work (PV) done by mass entering the system. The reversible flow work is given by:

$$
w_{\mathrm{rev}}=-\int v d P+\Delta K E+\Delta P E
$$

First Law applies whether or not processes are reversible.
FIRST LAW (energy balance)

$$
\begin{aligned}
\Sigma \dot{m}\left[h_{i}\right. & \left.+V_{i}^{2} / 2+g Z_{i}\right]-\Sigma \dot{m}\left[h_{e}+V_{e}^{2} / 2+g Z_{e}\right] \\
& +\dot{Q}_{i n}-\dot{W}_{n e t}=d\left(m_{s} u_{s}\right) / d t
\end{aligned}
$$

where
$\dot{W}_{\text {net }}=$ rate of net or shaft work transfer,
$m_{s}=$ mass of fluid within the system,
$u_{s}=$ specific internal energy of system,
$\dot{Q}=$ rate of heat transfer (neglecting kinetic and potential energy).

SPECIAL CASES OF OPEN SYSTEMS

Constant Volume:

$$
w_{r e v}=-v\left(P_{2}-P_{1}\right)
$$

Constant Pressure:
$w_{\text {rev }}=0$
Constant Temperature:
(ideal gas) $P v=$ constant:

$$
w_{\text {rev }}=R T \ln \left(v_{2} / v_{1}\right)=R T \ln \left(P_{1} / P_{2}\right)
$$

Isentropic (ideal gas):

$$
P v^{k}=\text { constant }
$$

$$
w_{r e v}=k\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-k)
$$

$$
=k R\left(T_{2}-T_{1}\right) /(1-k)
$$

$$
w_{\text {rev }}=\frac{k}{k-1} R T_{1}\left[1-\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}\right]
$$

Polytropic: $P v^{n}=$ constant $w_{\text {rev }}=n\left(P_{2} v_{2}-P_{1} v_{1}\right) /(1-n)$

Steady-State Systems

The system does not change state with time. This assumption is valid for steady operation of turbines, pumps, compressors, throttling valves, nozzles, and heat exchangers, including boilers and condensers.

$$
\begin{gathered}
\sum \dot{m}_{i}\left(h_{i}+V_{i}^{2} / 2+g Z_{i}\right)-\sum \dot{m}_{e}\left(h_{e}+V_{e}^{2} / 2+g Z_{e}\right) \\
\\
+\dot{Q}_{\text {in }}-\dot{W}_{\text {out }}=0 \text { and } \\
\sum \dot{m}_{i}=\sum \dot{m}_{e}, \quad \text { where }
\end{gathered}
$$

$\dot{m}=$ mass flow rate (subscripts i and e refer to inlet and exit states of system),
$g=$ acceleration of gravity,
$Z=$ elevation,
$V=$ velocity, and
$\dot{w}=$ rate of work.

SPECIAL CASES OF STEADY-FLOW ENERGY EQUATION

Nozzles, Diffusers: Velocity terms are significant. No elevation change, no heat transfer, and no work. Single mass stream.

$$
h_{i}+V_{i}^{2} / 2=h_{e}+V_{e}^{2} / 2
$$

Efficiency (nozzle) $=\quad \frac{V_{e}^{2}-V_{i}^{2}}{2\left(h_{i}-h_{e s}\right)}$, where

$$
h_{e s}=\text { enthalpy at isentropic exit state. }
$$

Turbines, Pumps, Compressors: Often considered adiabatic (no heat transfer). Velocity terms usually can be ignored. Significant work terms. Single mass stream.

$$
\begin{gathered}
h_{i}=h_{e}+w \\
\text { Efficiency (turbine) }=\frac{h_{i}-h_{e}}{h_{i}-h_{e s}}
\end{gathered}
$$

Efficiency (compressor, pump) $=\frac{h_{e s}-h_{i}}{h_{e}-h_{i}}$
Throttling Valves and Throttling Processes: No work, no heat transfer, and single-mass stream. Velocity terms often insignificant.

$$
h_{i}=h_{e}
$$

Boilers, Condensers, Evaporators, One Side in a Heat Exchanger: Heat transfer terms are significant. For a singlemass stream, the following applies:

$$
h_{i}+q=h_{e}
$$

Heat Exchangers: No heat or work. Two separate flow rates \dot{m}_{1} and m_{2} :

$$
\dot{m}_{1}\left(h_{1 i}-h_{1 e}\right)=\dot{m}_{2}\left(h_{2 e}-h_{2 i}\right)
$$

Mixers, Separators, Open or Closed Feedwater Heaters:

$$
\begin{aligned}
& \sum \dot{m}_{i} h_{i}=\sum \dot{m}_{e} h_{e} \quad \text { and } \\
& \sum \dot{m}_{i}=\sum \dot{m}_{e}
\end{aligned}
$$

BASIC CYCLES

Heat engines take in heat Q_{H} at a high temperature T_{H}, produce a net amount of work w, and reject heat Q_{L} at a low temperature T_{L}. The efficiency η of a heat engine is given by:

$$
\eta=w / Q_{H}=\left(Q_{H}-Q_{L}\right) / Q_{H}
$$

The most efficient engine possible is the Carnot Cycle. Its efficiency is given by:
$\eta_{c}=\left(T_{H}-T_{L}\right) / T_{H}$ where
T_{H} and $T_{L}=$ absolute temperatures (Kelvin or Rankine).
The following heat-engine cycles are plotted on $P-v$ and $T-s$ diagrams (see page 52):

Carnot, Otto, Rankine
Refrigeration Cycles are the reverse of heat-engine cycles. Heat is moved from low to high temperature requiring work W. Cycles can be used either for refrigeration or as heat pumps.
Coefficient of Performance (COP) is defined as:

$$
\begin{aligned}
& \mathrm{COP}=Q_{H} / W \text { for heat pump, and as } \\
& \mathrm{COP}=Q_{L} / W \text { for refrigerators and air conditioners. }
\end{aligned}
$$

Upper limit of COP is based on reversed Carnot Cycle:

$$
\mathrm{COP}_{c}=T_{H} /\left(T_{H}-T_{L}\right) \text { for heat pump and }
$$

$$
\mathrm{COP}_{c}=T_{L} /\left(T_{H}-T_{L}\right) \text { for refrigeration. }
$$

1 ton refrigeration $=12,000 \mathrm{Btu} / \mathrm{hr}=3,516 \mathrm{~W}$

IDEAL GAS MIXTURES

$i=1,2, \ldots, n$ constituents. Each constituent is an ideal gas. Mole Fraction: $N_{i}=$ number of moles of component i.

$$
x_{i}=N_{i} / N ; N=\Sigma N_{i} ; \Sigma x_{i}=1
$$

Mass Fraction: $y_{i}=m_{i} / m ; m=\Sigma m_{i} ; \Sigma y_{i}=1$
Molecular Weight: $M=m / N=\Sigma x_{i} M_{i}$
Gas Constant: $R=\bar{R} / M$
To convert mole fractions to mass fractions:

$$
y_{i}=\frac{x_{i} M_{i}}{\sum\left(x_{i} M_{i}\right)}
$$

To convert mass fractions to mole fractions:

$$
x_{i}=\frac{y_{i} / M_{i}}{\sum\left(y_{i} / M_{i}\right)}
$$

Partial Pressures $p=\sum p_{i} ; p_{i}=\frac{m_{i} R_{i} T}{V}$
Partial Volumes $\quad V=\sum V_{i j} ; V_{i}=\frac{m_{i} R_{i} T}{V}$
where
$p, V, T=$ the pressure, volume, and temperature of the mixture.

$$
x_{i}=p_{i} / p=V_{i} / V
$$

Other Properties

$u=\Sigma\left(y_{i} u_{i}\right) ; h=\Sigma\left(y_{i} h_{i}\right) ; s=\Sigma\left(y_{i} s_{i}\right)$
u_{i} and h_{i} are evaluated at T, and
s_{i} is evaluated at T and p_{i}.

PSYCHROMETRICS

We deal here with a mixture of dry air (subscript a) and water vapor (subscript v):

$$
p=p_{a}+p_{v}
$$

Specific Humidity (absolute humidity) ω :

$$
\omega=m_{v} / m_{a} \text {, where }
$$

$m_{v}=$ mass of water vapor and
$m_{a}=$ mass of dry air.

$$
\omega=0.622 p_{v} / p_{a}=0.622 p_{v} /\left(p-p_{v}\right)
$$

Relative Humidity ϕ :

$$
\phi=m_{v} / m_{g}=p_{v} / p_{g}, \text { where }
$$

$m_{g}=$ mass of vapor at saturation and
$p_{g}=$ saturation pressure at T.
Enthalpy $h: h=h_{a}+\omega h_{v}$
Dew-Point Temperature $T_{d p}$:

$$
T_{d p}=T_{\text {sat }} \text { at } p_{g}=p_{v}
$$

Wet-bulb temperature $T_{w b}$ is the temperature indicated by a thermometer covered by a wick saturated with liquid water and in contact with moving air.
Humidity Volume: Volume of moist air/mass of dry air.

Psychrometric Chart

A plot of specific humidity as a function of dry-bulb temperature plotted for a value of atmospheric pressure. (See chart at end of section.)

PHASE RELATIONS

Clapeyron Equation for Phase Transitions:

$$
\left(\frac{d p}{d T}\right)_{s a t}=\frac{h_{f g}}{T v_{f g}}=\frac{s_{f g}}{v_{f g}}, \quad \text { where }
$$

$h_{f g}=$ enthalpy change for phase transitions,
$v_{f g}=$ volume change,
$s_{f g}=$ entropy change,
$T=$ absolute temperature, and
$(d P / d T)_{\text {sat }}=$ slope of vapor-liquid saturation line.

Gibbs Phase Rule

$$
P+F=C+2, \text { where }
$$

$P=$ number of phases making up a system,
$F=$ degrees of freedom, and
$C=$ number of components in a system.

Gibbs Free Energy

Energy released or absorbed in a reaction occurring reversibly at constant pressure and temperature ΔG.

Helmholtz Free Energy

Energy released or absorbed in a reaction occurring reversibly at constant volume and temperature ΔA.

COMBUSTION PROCESSES

First, the combustion equation should be written and balanced. For example, for the stoichiometric combustion of methane in oxygen:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Combustion in Air

For each mole of oxygen, there will be 3.76 moles of nitrogen. For stoichiometric combustion of methane in air:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2}+2(3.76) \mathrm{N}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+7.52 \mathrm{~N}_{2}
$$

Combustion in Excess Air

The excess oxygen appears as oxygen on the right side of the combustion equation.

Incomplete Combustion

Some carbon is burned to create carbon monoxide (CO).
Air-Fuel Ratio $(A / F): A / F=\quad \frac{\text { mass of air }}{\text { mass of fuel }}$
Stoichiometric (theoretical) air-fuel ratio is the air-fuel ratio calculated from the stoichiometric combustion equation.

Percent Theoretical Air $=\frac{(A / F)_{\text {actual }}}{(A / F)_{\text {stoichiomertic }}} \times 100$
Percent Excess Air

$$
=\frac{(A / F)_{\text {actual }}-(A / F)_{\text {stoichiometric }}}{(A / F)_{\text {stocichiometric }}} \times 100
$$

SECOND LAW OF THERMODYNAMICS

Thermal Energy Reservoirs
$\Delta S_{\text {reservoir }}=Q / T_{\text {reservoir, }}$, where
Q is measured with respect to the reservoir.

Kelvin-Planck Statement of Second Law

No heat engine can operate in a cycle while transferring heat with a single heat reservoir.
COROLLARY to Kelvin-Planck: No heat engine can have a higher efficiency than a Carnot cycle operating between the same reservoirs.

Clausius Statement of Second Law

No refrigeration or heat pump cycle can operate without a net work input.
COROLLARY: No refrigerator or heat pump can have a higher COP than a Carnot cycle refrigerator or heat pump.

VAPOR-LIQUID MIXTURES

Henry's Law at Constant Temperature

At equilibrium, the partial pressure of a gas is proportional to its concentration in a liquid. Henry's Law is valid for low concentrations; i.e., $x \approx 0$.

$$
p_{i}=p y_{i}=h x_{i} \text {, where }
$$

$h=$ Henry's Law constant,
$p_{i}=$ partial pressure of a gas in contact with a liquid,
$x_{i}=$ mol fraction of the gas in the liquid,
$y_{i}=\mathrm{mol}$ fraction of the gas in the vapor, and
$p=$ total pressure.

Raoult's Law for Vapor-Liquid Equilibrium

Valid for concentrations near 1; i.e., $x_{i} \approx 1$.

$$
p_{i}=x_{i} p_{i}^{*} \text {, where }
$$

$p_{i}=$ partial pressure of component i,
$x_{i}=$ mol fraction of component i in the liquid, and
$p_{i}^{*}=$ vapor pressure of pure component i at the temperature of the mixture.

ENTROPY

$d s=(1 / T) \delta Q_{\mathrm{rev}}$
$s_{2}-s_{1}=\int_{1}^{2}(1 / T) \delta Q_{\mathrm{rev}}$
Inequality of Clausius

$$
\begin{aligned}
& \phi(1 / T) \delta Q \leq 0 \\
& \int_{1}^{2}(1 / T) \delta Q \leq s_{2}-s_{1}
\end{aligned}
$$

Isothermal, Reversible Process

$$
\Delta s=s_{2}-s_{1}=Q / T
$$

Isentropic process

$\Delta s=0 ; d s=0$
A reversible adiabatic process is isentropic.

Adiabatic Process

$\delta Q=0 ; \Delta s \geq 0$
Increase of Entropy Principle

$$
\begin{aligned}
& \Delta s_{\text {total }}=\Delta s_{\text {system }}+\Delta s_{\text {surroundings }} \geq 0 \\
& \Delta \dot{s}_{\text {total }}=\sum \dot{m}_{\text {out }} s_{\text {out }}-\sum \dot{m}_{\text {in }} s_{\text {in }} \\
& \quad-\sum\left(\dot{Q}_{\text {extermal }} / T_{\text {extermal }}\right) \geq 0
\end{aligned}
$$

Temperature-Entropy (T-s) Diagram

$Q_{\text {rev }}=\int_{1}^{2} T d s \quad 1$| T\| |
| :--- |

Entropy Change for Solids and Liquids

$d s=c(d T / T)$
$s_{2}-s_{1}=\int c(d T / T)=c_{\text {mean }} \ln \left(T_{2} / T_{1}\right)$,
where c equals the heat capacity of the solid or liquid.

Irreversibility

$I=w_{\text {rev }}-w_{\text {actual }}$

Closed-System Availability

(no chemical reactions)

$$
\begin{aligned}
& \phi=\left(u-u_{\mathrm{o}}\right)-T_{\mathrm{o}}\left(s-s_{\mathrm{o}}\right)+p_{\mathrm{o}}\left(v-v_{\mathrm{o}}\right) \\
& w_{\text {reversible }}=\phi_{1}-\phi_{2}
\end{aligned}
$$

Open-System Availability

$\psi=\left(h-h_{\mathrm{o}}\right)-T_{\mathrm{o}}\left(s-s_{\mathrm{o}}\right)+V^{2} / 2+g z$
$w_{\text {reversible }}=\psi_{1}-\psi_{2}$

COMMON THERMODYNAMIC CYCLES	
Carnot	Reversed Carnot
	Otto (gasoline engine) $\begin{gathered} \eta=1-\mathrm{r}^{1-\mathrm{k}} \\ r=\mathrm{v}_{1} / \mathrm{v}_{2} \end{gathered}$
Rankine $\eta=\frac{\left(h_{3}-h_{4}\right)-\left(h_{2}-h_{1}\right)}{h_{3}-h_{2}}$	Refrigeration (Reversed Rankine Cycle) $\mathrm{COP}_{\mathrm{ref}}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}} \quad \mathrm{COP}_{\mathrm{HP}}=\frac{\mathrm{h}_{2}-\mathrm{h}_{3}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}$

Saturated Water - Temperature Table												
Temp.	Sat.	Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy kJ/kg			$\begin{gathered} \text { Enthalpy } \\ \text { kJ/kg } \end{gathered}$			$\begin{gathered} \text { Entropy } \\ \mathbf{k J} /(\mathrm{kg} \cdot \mathbf{K}) \end{gathered}$		
$\begin{gathered} { }^{\mathbf{0}} \mathbf{C} \\ T \end{gathered}$	$\begin{gathered} \mathbf{k P a} \\ p_{\text {sat }} \end{gathered}$	Sat. liquid v_{f}	Sat. vapor v_{g}	Sat. liquid u_{f}	$\begin{gathered} \text { Evap. } \\ u_{f g} \end{gathered}$	Sat. vapor u_{g}	Sat. liquid h_{f}	$\begin{gathered} \text { Evap. } \\ h_{f g} \end{gathered}$	Sat. vapor h_{g}	Sat. liquid \qquad S_{f}	$\begin{gathered} \text { Evap. } \\ S_{f g} \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ S_{g} \\ \hline \end{gathered}$
0.01	0.6113	0.001000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562
5	0.8721	0.001000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8.9008
15	1.7051	0.001001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.7814
20	2.339	0.001002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672
25	3.169	0.001003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.5580
30	4.246	0.001004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.4533
35	5.628	0.001006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.3531
40	7.384	0.001008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.2570
45	9.593	0.001010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.1648
50	12.349	0.001012	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.0763
55	15.758	0.001015	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	0.7679	7.2234	7.9913
60	19.940	0.001017	7.671	251.11	2205.5	2456.6	251.13	2358.5	2609.6	0.8312	7.0784	7.9096
65	25.03	0.001020	6.197	272.02	2191.1	2463.1	272.06	2346.2	2618.3	0.8935	6.9375	7.8310
70	31.19	0.001023	5.042	292.95	2176.6	2569.6	292.98	2333.8	2626.8	0.9549	6.8004	7.7553
75	38.58	0.001026	4.131	313.90	2162.0	2475.9	313.93	2321.4	2635.3	1.0155	6.6669	7.6824
80	47.39	0.001029	3.407	334.86	2147.4	2482.2	334.91	2308.8	2643.7	1.0753	6.5369	7.6122
85	57.83	0.001033	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.5445
90	70.14	0.001036	2.361	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.4791
95	84.55	0.001040	1.982	397.88	2102.7	2500.6	397.96	2270.2	2668.1	1.2500	6.1659	7.4159
	MPa											
100	0.10135	0.001044	1.6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.3549
105	0.12082	0.001048	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.2958
110	0.14327	0.001052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.2387
115	0.16906	0.001056	1.0366	482.30	2041.4	2523.7	482.48	2216.5	2699.0	1.4734	5.7100	7.1833
120	0.19853	0.001060	0.8919	503.50	2025.8	2529.3	503.71	2202.6	2706.3	1.5276	5.6020	7.1296
125	0.2321	0.001065	0.7706	524.74	2009.9	2534.6	524.99	2188.5	2713.5	1.5813	5.4962	7.0775
130	0.2701	0.001070	0.6685	546.02	1993.9	2539.9	546.31	2174.2	2720.5	1.6344	5.3925	7.0269
135	0.3130	0.001075	0.5822	567.35	1977.7	2545.0	567.69	2159.6	2727.3	1.6870	5.2907	6.9777
140	0.3613	0.001080	0.5089	588.74	1961.3	2550.0	589.13	2144.7	2733.9	1.7391	5.1908	6.9299
145	0.4154	0.001085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2740.3	1.7907	5.0926	6.8833
150	0.4758	0.001091	0.3928	631.68	1927.9	2559.5	632.20	2114.3	2746.5	1.8418	4.9960	6.8379
155	0.5431	0.001096	0.3468	653.24	1910.8	2564.1	653.84	2098.6	2752.4	1.8925	4.9010	6.7935
160	0.6178	0.001102	0.3071	674.87	1893.5	2568.4	675.55	2082.6	2758.1	1.9427	4.8075	6.7502
165	0.7005	0.001108	0.2727	696.56	1876.0	2572.5	697.34	2066.2	2763.5	1.9925	4.7153	6.7078
170	0.7917	0.001114	0.2428	718.33	1858.1	2576.5	719.21	2049.5	2768.7	2.0419	4.6244	6.6663
175	0.8920	0.001121	0.2168	740.17	1840.0	2580.2	741.17	2032.4	2773.6	2.0909	4.5347	6.6256
180	1.0021	0.001127	0.19405	762.09	1821.6	2583.7	763.22	2015.0	2778.2	2.1396	4.4461	6.5857
185	1.1227	0.001134	0.17409	784.10	1802.9	2587.0	785.37	1997.1	2782.4	2.1879	4.3586	6.5465
190	1.2544	0.001141	0.15654	806.19	1783.8	2590.0	807.62	1978.8	2786.4	2.2359	4.2720	6.5079
195	1.3978	0.001149	0.14105	828.37	1764.4	2592.8	829.98	1960.0	2790.0	2.2835	4.1863	6.4698
200	1.5538	0.001157	0.12736	850.65	1744.7	2595.3	852.45	1940.7	2793.2	2.3309	4.1014	6.4323
205	1.7230	0.001164	0.11521	873.04	1724.5	2597.5	875.04	1921.0	2796.0	2.3780	4.0172	6.3952
210	1.9062	0.001173	0.10441	895.53	1703.9	2599.5	897.76	1900.7	2798.5	2.4248	3.9337	6.3585
215	2.104	0.001181	0.09479	918.14	1682.9	2601.1	920.62	1879.9	2800.5	2.4714	3.8507	6.3221
220	2.318	0.001190	0.08619	940.87	1661.5	2602.4	943.62	1858.5	2802.1	2.5178	3.7683	6.2861
225	2.548	0.001199	0.07849	963.73	1639.6	2603.3	966.78	1836.5	2803.3	2.5639	3.6863	6.2503
230	2.795	0.001209	0.07158	986.74	1617.2	2603.9	990.12	1813.8	2804.0	2.6099	3.6047	6.2146
235	3.060	0.001219	0.06537	1009.89	1594.2	2604.1	1013.62	1790.5	2804.2	2.6558	3.5233	6.1791
240	3.344	0.001229	0.05976	1033.21	1570.8	2604.0	1037.32	1766.5	2803.8	2.7015	3.4422	6.1437
245	3.648	0.001240	0.05471	1056.71	1546.7	2603.4	1061.23	1741.7	2803.0	2.7472	3.3612	6.1083
250	3.973	0.001251	0.05013	1080.39	1522.0	2602.4	1085.36	1716.2	2801.5	2.7927	3.2802	6.0730
255	4.319	0.001263	0.04598	1104.28	1596.7	2600.9	1109.73	1689.8	2799.5	2.8383	3.1992	6.0375
260	4.688	0.001276	0.04221	1128.39	1470.6	2599.0	1134.37	1662.5	2796.9	2.8838	3.1181	6.0019
265	5.081	0.001289	0.03877	1152.74	1443.9	2596.6	1159.28	1634.4	2793.6	2.9294	3.0368	5.9662
270	5.499	0.001302	0.03564	1177.36	1416.3	2593.7	1184.51	1605.2	2789.7	2.9751	2.9551	5.9301
275	5.942	0.001317	0.03279	1202.25	1387.9	2590.2	1210.07	1574.9	2785.0	3.0208	2.8730	5.8938
280	6.412	0.001332	0.03017	1227.46	1358.7	2586.1	1235.99	1543.6	2779.6	3.0668	2.7903	5.8571
285	6.909	0.001348	0.02777	1253.00	1328.4	2581.4	1262.31	1511.0	2773.3	3.1130	2.7070	5.8199
290	7.436	0.001366	0.02557	1278.92	1297.1	2576.0	1289.07	1477.1	2766.2	3.1594	2.6227	5.7821
295	7.993	0.001384	0.02354	1305.2	1264.7	2569.9	1316.3	1441.8	2758.1	3.2062	2.5375	5.7437
300	8.581	0.001404	0.02167	1332.0	1231.0	2563.0	1344.0	1404.9	2749.0	3.2534	2.4511	5.7045
305	9.202	0.001425	0.019948	1359.3	1195.9	2555.2	1372.4	1366.4	2738.7	3.3010	2.3633	5.6643
310	9.856	0.001447	0.018350	1387.1	1159.4	2546.4	1401.3	1326.0	2727.3	3.3493	2.2737	5.6230
315	10.547	0.001472	0.016867	1415.5	1121.1	2536.6	1431.0	1283.5	2714.5	3.3982	2.1821	5.5804
320	11.274	0.001499	0.015488	1444.6	1080.9	2525.5	1461.5	1238.6	2700.1	3.4480	2.0882	5.5362
330	12.845	0.001561	0.012996	1505.3	993.7	2498.9	1525.3	1140.6	2665.9	3.5507	1.8909	5.4417
340	14.586	0.001638	0.010797	1570.3	894.3	2464.6	1594.2	1027.9	2622.0	3.6594	1.6763	5.3357
350	16.513	0.001740	0.008813	1641.9	776.6	2418.4	1670.6	893.4	2563.9	3.7777	1.4335	5.2112
360	18.651	0.001893	0.006945	1725.2	626.3	2351.5	1760.5	720.3	2481.0	3.9147	1.1379	5.0526
370	21.03	0.002213	0.004925	1844.0	384.5	2228.5	1890.5	441.6	2332.1	4.1106	0.6865	4.7971
374.14	22.09	0.003155	0.003155	2029.6	0	2029.6	2099.3	0	2099.3	4.4298	0	4.4298

Superheated Water Tables								
\bar{T} Temp.	$\begin{gathered} v \\ \mathrm{~m}^{3} / \mathbf{k g} \end{gathered}$	$\begin{gathered} u \\ \mathbf{k J} / \mathbf{k g} \\ \hline \end{gathered}$	$\begin{gathered} h \\ \mathbf{k J} / \mathbf{k g} \\ \hline \end{gathered}$	$\begin{gathered} s \\ \mathbf{k J} /(\mathrm{kg} \cdot \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} v \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$	$\mathbf{k J} / \mathbf{k g}$	$\begin{gathered} \hline h \\ \mathbf{k J} / \mathbf{k g} \\ \hline \end{gathered}$	$\begin{gathered} s \\ \mathbf{k J} /(\mathbf{k g} \cdot \mathrm{K}) \\ \hline \end{gathered}$
${ }^{0} \mathrm{C}$	$p=0.01 \mathrm{MPa}\left(45.81{ }^{\circ} \mathrm{C}\right)$				$p=0.05 \mathrm{MPa}\left(81.33{ }^{\circ} \mathrm{C}\right)$			
Sat.	14.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939
50	14.869	2443.9	2592.6	8.1749				
100	17.196	2515.5	2687.5	8.4479	3.418	2511.6	2682.5	7.6947
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401
200	21.825	2661.3	2879.5	8.9038	4.356	2659.9	2877.7	8.1580
250	24.136	2736.0	2977.3	9.1002	4.820	2735.0	2976.0	8.3556
300	26.445	2812.1	3076.5	9.2813	5.284	2811.3	3075.5	8.5373
400	31.063	2968.9	3279.6	9.6077	6.209	2968.5	3278.9	8.8642
500	35.679	3132.3	3489.1	9.8978	7.134	3132.0	3488.7	9.1546
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599
800	49.526	3663.8	4159.0	10.6281	9.904	3663.6	4158.9	9.8852
900	54.141	3855.0	4396.4	10.8396	10.828	3854.9	4396.3	10.0967
1000	58.757	4053.0	4640.6	11.0393	11.751	4052.9	4640.5	10.2964
1100	63.372	4257.5	4891.2	11.2287	12.674	4257.4	4891.1	10.4859
1200	67.987	4467.9	5147.8	11.4091	13.597	4467.8	5147.7	10.6662
1300	72.602	4683.7	5409.7	11.5811	14.521	4683.6	5409.6	10.8382
	$p=0.10 \mathrm{MPa}\left(99.63{ }^{\circ} \mathrm{C}\right)$				$p=0.20 \mathrm{MPa}\left(120.23{ }^{\circ} \mathrm{C}\right)$			
Sat.	1.6940	2506.1	2675.5	7.3594	0.8857	2529.5	2706.7	7.1272
100	1.6958	2506.7	2676.2	7.3614				
150	1.9364	2582.8	2776.4	7.6134	0.9596	2576.9	2768.8	7.2795
200	2.172	2658.1	2875.3	7.8343	1.0803	2654.4	2870.5	7.5066
250	2.406	2733.7	2974.3	8.0333	1.1988	2731.2	2971.0	7.7086
300	2.639	2810.4	3074.3	8.2158	1.3162	2808.6	3071.8	7.8926
400	3.103	2967.9	3278.2	8.5435	1.5493	2966.7	3276.6	8.2218
500	3.565	3131.6	3488.1	8.8342	1.7814	3130.8	3487.1	8.5133
600	4.028	3301.9	3704.4	9.0976	2.013	3301.4	3704.0	8.7770
700	4.490	3479.2	3928.2	9.3398	2.244	3478.8	3927.6	9.0194
800	4.952	3663.5	4158.6	9.5652	2.475	3663.1	4158.2	9.2449
900	5.414	3854.8	4396.1	9.7767	2.705	3854.5	4395.8	9.4566
1000	5.875	4052.8	4640.3	9.9764	2.937	4052.5	4640.0	9.6563
1100	6.337	4257.3	4891.0	10.1659	3.168	4257.0	4890.7	9.8458
1200	6.799	4467.7	5147.6	10.3463	3.399	4467.5	5147.5	10.0262
1300	7.260	4683.5	5409.5	10.5183	3.630	4683.2	5409.3	10.1982
	$p=0.40 \mathrm{MPa}\left(143.63{ }^{\circ} \mathrm{C}\right)$				$\underline{p}=0.60 \mathrm{MPa}\left(158.85{ }^{\circ} \mathrm{C}\right.$)			
Sat.	0.4625	2553.6	2738.6	6.8959	0.3157	2567.4	2756.8	6.7600
150	0.4708	2564.5	2752.8	6.9299				
200	0.5342	2646.8	2860.5	7.1706	0.3520	2638.9	2850.1 2957.2	6.96657.1816
250	0.5951	2726.1	2964.2	7.3789	0.3938	2720.9	2957.2	
300	0.6548	2804.8	3066.8	7.5662	0.4344	$\begin{aligned} & \mathbf{2 8 0 1 . 0} \\ & 2881.2 \end{aligned}$		7.1816 7.3724
350					0.4742		3061.6 3165.7	$\begin{aligned} & 7.3724 \\ & 7.5464 \end{aligned}$
400	0.7726	2964.4	3273.4	7.8985	0.5137	$\begin{aligned} & 2881.2 \\ & 2962.1 \end{aligned}$	3270.3	$\begin{aligned} & 7.5464 \\ & 7.7079 \end{aligned}$
500	0.8893	3129.2	3484.9	8.1913	0.5920	3127.6	3482.8	8.0021
600	1.0055	3300.2	3702.4	8.4558	0.6697	3299.1	3700.9	8.2674
700	1.1215	3477.9	3926.5	8.6987	0.7472	3477.0	3925.3	8.5107
800	1.2372	3662.4	4157.3	8.9244	0.8245	3661.8	4156.5	8.7367
900	1.3529	3853.9	4395.1	9.1362	0.9017	3853.4	4394.4	8.9486
1000	1.4685	4052.0	4639.4	9.3360	0.9788	4051.5	4638.8	9.1485
1100	1.5840	4256.5	4890.2	9.5256	1.0559	4256.1	4889.6	9.3381
1200	1.6996	4467.0	5146.8	9.7060	1.1330	$\begin{array}{r} 4466.5 \\ 4682.3 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{5 1 4 6 . 3} \\ & 5408.3 \end{aligned}$	9.5185
1300	1.8151	4682.8	5408.8	9.8780	1.2101			9.6906
	$p=0.80 \mathrm{MPa}\left(170.43{ }^{\mathbf{0}} \mathrm{C}\right)$				$p=1.00 \mathrm{MPa}\left(179.91{ }^{\circ} \mathrm{C}\right.$)			
Sat.	0.2404	2576.8	2769.1	6.6628	0.19444	2583.6	2778.1	6.5865
200	0.2608	2630.6	2839.3	6.8158	0.2060	2621.9	2827.9	6.6940
250	0.2931	2715.5	2950.0	7.0384	0.2327	2709.9	2942.6	6.9247
300	0.3241	2797.2	3056.5	7.2328	0.2579	2793.2	3051.2	7.1229
350	0.3544	2878.2	3161.7	7.4089	0.2825	2875.2	3157.7	7.3011
400	0.3843	2959.7	3267.1	7.5716	0.3066	2957.3	3263.9	7.4651
500	0.4433	3126.0	3480.6	7.8673	0.3541	3124.4	3478.5	7.7622
600	0.5018	3297.9	3699.4	8.1333	0.4011	3296.8	3697.9	8.0290
700	0.5601	3476.2	3924.2	8.3770	0.4478	3475.3	3923.1	8.2731
800	0.6181	3661.1	4155.6	8.6033	0.4943	3660.4	4154.7	8.4996
900	0.6761	3852.8	4393.7	8.8153	0.5407	3852.2	4392.9	8.7118
1000	0.7340	4051.0	4638.2	9.0153	0.5871	4050.5	4637.6	8.9119
1100	0.7919	4255.6	4889.1	9.2050	0.6335	4255.1	4888.6	9.1017
1200	0.8497	4466.1	5145.9	9.3855	0.6798	4465.6	5145.4	9.2822
1300	0.9076	4681.8	5407.9	9.5575	0.7261	4681.3	5407.4	9.4543

$P-h$ DIAGRAM FOR REFRIGERANT HFC-134a

(metric units)
(Reproduced by permission of the DuPont Company)
(дeq) ennsserd

ASHRAE PSYCHROMETRIC CHART NO. 1
Reproduced by permission of ASHRAE

HEAT CAPACITY

(at Room Temperature)

Substance	Mol wt	c_{p}		c_{v}		\boldsymbol{k}
		kJ/(kg•K)	Btu/(lbm- ${ }^{\text {a }}$)	kJ/(kg•K)	Btu/(lbm- ${ }^{\text {² }}$)	
Gases						
Air	29	1.00	0.240	0.718	0.171	1.40
Argon	40	0.520	0.125	0.312	0.0756	1.67
Butane	58	1.72	0.415	1.57	0.381	1.09
Carbon dioxide	44	0.846	0.203	0.657	0.158	1.29
Carbon monoxide	28	1.04	0.249	0.744	0.178	1.40
Ethane	30	1.77	0.427	1.49	0.361	1.18
Helium	4	5.19	1.25	3.12	0.753	1.67
Hydrogen	2	14.3	3.43	10.2	2.44	1.40
Methane	16	2.25	0.532	1.74	0.403	1.30
Neon	20	1.03	0.246	0.618	0.148	1.67
Nitrogen	28	1.04	0.248	0.743	0.177	1.40
Octane vapor	114	1.71	0.409	1.64	0.392	1.04
Oxygen	32	0.918	0.219	0.658	0.157	1.40
Propane	44	1.68	0.407	1.49	0.362	1.12
Steam	18	1.87	0.445	1.41	0.335	1.33

Substance	c_{P}		Density	
	kJ/(kg•K)	Btu/(lbm- ${ }^{\text {a }}$ R)	kg/m ${ }^{3}$	$\mathbf{l b m} / \mathrm{ft}^{\mathbf{3}}$
Liquids				
Ammonia Mercury Water	$\begin{aligned} & \hline 4.80 \\ & 0.139 \\ & 4.18 \end{aligned}$	$\begin{aligned} & \hline 1.146 \\ & 0.033 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{array}{r} 602 \\ 13,560 \\ 997 \end{array}$	$\begin{gathered} 38 \\ 847 \\ 62.4 \end{gathered}$
Solids				
Aluminum Copper Ice $\left(0^{\circ} \mathrm{C} ; 32^{\circ} \mathrm{F}\right)$ Iron Lead	$\begin{aligned} & \hline 0.900 \\ & 0.386 \\ & 2.11 \\ & 0.450 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 0.215 \\ & 0.092 \\ & 0.502 \\ & 0.107 \\ & 0.030 \end{aligned}$	$\begin{array}{r} \hline 2,700 \\ 8,900 \\ 917 \\ 7,840 \\ 11,310 \end{array}$	$\begin{gathered} \hline 170 \\ 555 \\ 57.2 \\ 490 \\ 705 \end{gathered}$

HEAT TRANSFER

There are three modes of heat transfer: conduction, convection, and radiation. Boiling and condensation are classified as convection.

Conduction

Fourier's Law of Conduction

$$
\dot{\mathrm{Q}}=-\mathrm{kA}(\mathrm{dT} / \mathrm{dx}), \quad \text { where }
$$

$\dot{Q}=$ rate of heat transfer.
Conduction through a plane wall:

$\dot{Q}=-k A\left(T_{2}-T_{1}\right) / L, \quad$ where
$k=$ the thermal conductivity of the wall,
$A=$ the wall surface area,
$L=$ the wall thickness, and
$T_{1}, T_{2}=$ the temperature on the near side and far side of the wall respectively.

Thermal resistance of the wall is given by

$$
R=L /(k A)
$$

Resistances in series are added.
Composite walls:

$R_{\text {total }}=R_{1}+R_{2}$, where
$R_{1}=L_{1} /\left(k_{1} A\right)$ and
$R_{2}=L_{2} /\left(k_{2} A\right)$.
To evaluate surface or intermediate temperatures:

$$
T_{2}=T_{1}-\dot{Q} R_{1} ; T_{3}=T_{2}-\dot{Q} R_{2}
$$

Conduction through a cylindrical wall is given by

$$
\begin{aligned}
& \dot{\mathrm{Q}}=\frac{2 \pi \mathrm{~kL}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\ln \left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)} \\
& \mathrm{R}=\frac{\ln \left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)}{2 \pi \mathrm{~kL}}
\end{aligned}
$$

Convection

Convection is determined using a convection coefficient (heat transfer coefficient) h.

$$
\dot{Q}=h A\left(T_{w}-T_{\infty}\right), \quad \text { where }
$$

$A=$ the heat transfer area,
$T_{w}=$ work temperature, and
$T_{\infty}=$ bulk fluid temperature.
Resistance due to convection is given by

$$
R=1 /(h A)
$$

FINS: For a straight fin,

$$
\dot{Q}=\sqrt{h p k A_{c}}\left(T_{b}-T_{\infty}\right) \tanh m L_{c}, \quad \text { where }
$$

$h=$ heat transfer coefficient,
$p=$ exposed perimeter,
$k=$ thermal conductivity,
$A_{c}=$ cross-sectional area,
$T_{\mathrm{b}}=$ temperature at base of fin,
$T_{\infty}=$ fluid temperature,
$m=\sqrt{h p /\left(k A_{c}\right)}$, and
$L_{c}=L+A_{c} / p$, corrected length.

Radiation

The radiation emitted by a body is given by

$$
\dot{Q}=\varepsilon \sigma A T^{4}, \quad \text { where }
$$

$T=$ the absolute temperature $\left(\mathrm{K}\right.$ or $\left.{ }^{\circ} \mathrm{R}\right)$, $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)$

$$
\left[0.173 \times 10^{-8} \mathrm{Btu} /\left(\mathrm{hr}^{\left.\left.-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4}\right)\right], ~}\right.\right.
$$

$\varepsilon=$ the emissivity of the body, and
$A=$ the body surface area.
For a body (1) which is small compared to its surroundings

$$
\begin{equation*}
\dot{Q}_{12}=\varepsilon \sigma A\left(T_{1}^{4}-T_{2}^{4}\right), \quad \text { where } \tag{2}
\end{equation*}
$$

$\dot{Q}_{12}=$ the net heat transfer rate from the body.

A black body is defined as one which absorbs all energy incident upon it. It also emits radiation at the maximum rate for a body of a particular size at a particular temperature. For such a body

$$
\alpha=\varepsilon=1, \text { where }
$$

$\alpha=$ the absorptivity (energy absorbed/incident energy).
A gray body is one for which $\alpha=\varepsilon$, where

$$
0<\alpha<1 ; 0<\varepsilon<1
$$

Real bodies are frequently approximated as gray bodies.
The net energy exchange by radiation between two black bodies, which see each other, is given by

$$
\dot{Q}_{12}=A_{1} F_{12} \sigma\left(T_{1}^{4}-T_{2}^{4}\right), \quad \text { where }
$$

$F_{12}=$ the shape factor (view factor, configuration factor); $0 \leq$ $F_{12} \leq 1$.
For any body, $\alpha+\rho+\tau=1$, where
$\alpha=$ absorptivity,
$\rho=$ reflectivity (ratio of energy reflected to incident energy), and
$\tau=$ transmissivity (ratio of energy transmitted to incident energy).

For an opaque body, $\alpha+\rho=1$
For a gray body, $\quad \varepsilon+\rho=1$
The following is applicable to the PM examination for mechanical and chemical engineers.
The overall heat-transfer coefficient for a shell-and-tube heat exchanger is

$$
\frac{1}{U A}=\frac{1}{h_{i} A_{i}}+\frac{R_{f i}}{A_{i}}+\frac{t}{k A_{\text {avg }}}+\frac{R_{f o}}{A_{o}}+\frac{1}{h_{o} A_{o}}
$$

where
$A=$ any convenient reference area $\left(\mathrm{m}^{2}\right)$,
$A_{\text {avg }}=$ average of inside and outside area (for thin-walled tubes) (m^{2}),
$A_{i}=$ inside area of tubes $\left(\mathrm{m}^{2}\right)$,
$A_{o}=$ outside area of tubes $\left(\mathrm{m}^{2}\right)$,
$h_{i}=$ heat-transfer coefficient for inside of tubes $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$,
$h_{o}=$ heat-transfer coefficient for outside of tubes [W/(m².K)],
$k=$ thermal conductivityy of tube material $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$,
$R_{f i}=$ fouling factor for inside of tube $\left(\mathrm{m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)$,
$R_{f o}=$ fouling factor for outside of tube $\left(\mathrm{m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)$,
$t=$ tube-wall thickness (m), and
$U=$ overall heat-transfer coefficient based on area A and the log mean temperature difference $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$.

The log mean temperature difference (LMTD) for countercurrent flow in tubular heat exchangers is

$$
\Delta \mathrm{T}_{\mathrm{lm}}=\frac{\left(\mathrm{T}_{\mathrm{Ho}}-\mathrm{T}_{\mathrm{Ci}}\right)-\left(\mathrm{T}_{\mathrm{Hi}}-\mathrm{T}_{\mathrm{Co}}\right)}{\ln \left(\frac{\mathrm{T}_{\mathrm{Ho}}-\mathrm{T}_{\mathrm{Co}}}{\mathrm{~T}_{\mathrm{Hi}}-\mathrm{T}_{\mathrm{Ci}}}\right)}
$$

The log mean temperature difference for concurrent (parallel) flow in tubular heat exchangers is

$$
\Delta T_{l m}=\frac{\left(T_{H o}-T_{C o}\right)-\left(T_{H i}-T_{C i}\right)}{\ln \left(\frac{T_{H o}-T_{C o}}{T_{H i}-T_{C i}}\right)}
$$

where
$\Delta T_{l m}=\log$ mean temperature difference (K),
$T_{H i}=$ inlet temperature of the hot fluid (K),
$T_{\text {Ho }}=$ outlet temperature of the hot fluid (K),
$T_{C i}=$ inlet temperature of the cold fluid (K), and
$T_{C o}=$ outlet temperature of the cold fluid (K).
For individual heat-transfer coefficients of a fluid being heated or cooled in a tube, one pair of temperatures (either the hot or the cold) are the surface temperatures at the inlet and outlet of the tube.
Heat exchanger effectiveness =

$$
\begin{aligned}
& \frac{\text { actual heat transfer }}{\text { max possible heat transfer }}=\frac{\mathrm{q}}{\mathrm{q}_{\max }} \\
& \varepsilon=\frac{C_{H}\left(T_{H i}-T_{H o}\right)}{C_{\min }\left(T_{H i}-T_{C i}\right)}
\end{aligned}
$$

or

$$
\varepsilon=\frac{C_{C}\left(T_{C o}-T_{C i}\right)}{C_{\min }\left(T_{H i}-T_{C i}\right)}
$$

Where $C_{\text {min }}=$ smaller of C_{c} or C_{H}
Number of transfer units, $\quad \mathrm{NTU}=\frac{U A}{C_{\text {min }}}$
At a cross-section in a tube where heat is being transferred

$$
\begin{aligned}
\frac{\dot{Q}}{A} & =h\left(T_{w}-T_{b}\right)=\left[k_{f}\left(\frac{d t}{d r}\right)_{w}\right]_{\text {fluid }} \\
& =\left[k_{m}\left(\frac{d t}{d r}\right)_{w}\right]_{\text {meal }}, \quad \text { where }
\end{aligned}
$$

$\dot{Q} / A=$ local inward radial heat flux $\left(\mathrm{W} / \mathrm{m}^{2}\right)$,
$h \quad=$ local heat-transfer coefficient $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
$k_{f} \quad=$ thermal conductivity of the fluid $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$,
$k_{m}=$ thermal conductivity of the tube metal $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$,
$(d t / d r)_{w}=$ radial temperature gradient at the tube surface (K / m),
$T_{b} \quad=$ local bulk temperature of the fluid (K), and
$T_{w} \quad=$ local inside surface temperature of the tube (K).

Rate of Heat Transfer in a Tubular Heat Exchanger

For the equations below, the following definitions along with definitions previously supplied are required.
$\mathrm{D}=$ inside diameter
$\mathrm{Gz}=$ Graetz number $[\operatorname{RePr}(D / L)]$,
$\mathrm{Nu}=$ Nusselt number ($h D / k$),
$\operatorname{Pr}=\operatorname{Prandtl}$ number $\left(c_{P} \mu / k\right)$,
$A=$ area upon which U is based $\left(\mathrm{m}^{2}\right)$,
$F=$ configuration correction factor,
$g=$ acceleration of gravity $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$,
$L=$ heated (or cooled) length of conduit or surface (m),
$\dot{Q}=$ inward rate of heat transfer (W),
$T_{s}=$ temperature of the surface (K),
$T_{s v}=$ temperature of saturated vapor (K), and
$\lambda=$ heat of vaporization $(\mathrm{J} / \mathrm{kg})$.

$$
\dot{Q}=U A F \Delta T_{l m}
$$

Heat-transfer for laminar flow $(\operatorname{Re}<2,000)$ in a closed conduit.

$$
\mathrm{Nu}=3.66+\frac{0.19 \mathrm{Gz}^{0.8}}{1+0.117 \mathrm{Gz}^{0.467}}
$$

Heat-transfer for turbulent flow $\left(\operatorname{Re}>10^{4}, \operatorname{Pr}>0.7\right)$ in a closed conduit (Sieder-Tate equation).
where

$$
\mathrm{Nu}=\frac{\mathrm{h}_{\mathrm{i}} \mathrm{D}}{\mathrm{k}_{\mathrm{f}}}=0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{1 / 3}\left(\mu_{b} / \mu_{w}\right)^{0.14}
$$

$\mu_{b}=\mu\left(T_{b}\right)$,
$\mu_{w}=\mu\left(T_{w}\right)$, and Re and Pr are evaluated at T_{b}.
For non-circular ducts, use the equivalent diameter.
The equivalent diameter is defined as

$$
\mathrm{D}_{\mathrm{H}}=\frac{4(\text { cross }- \text { sectional area })}{\text { wetted perimeter }}
$$

For a circular annulus $\left(\mathrm{D}_{\mathrm{o}}>\mathrm{D}_{\mathrm{i}}\right)$ the equivalent diameter is

$$
D_{H}=D_{o}-D_{i}
$$

For liquid metals $(0.003<\operatorname{Pr}<0.05)$ flowing in closed conduits.
$\mathrm{Nu}=6.3+0.0167 \operatorname{Re}^{0.85} \operatorname{Pr}^{0.93}$ (constant heat flux)
$\mathrm{Nu}=7.0+0.025 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.8}$ (constant wall temperature)
Heat-transfer coefficient for condensation of a pure vapor on a vertical surface.

$$
\frac{h L}{k}=0.943\left(\frac{L^{3} \rho^{2} g \lambda}{k \mu\left(T_{s v}-T_{s}\right)}\right)^{0.25}
$$

Properties other than λ are for the liquid and are evaluated at the average between $T_{s v}$ and T_{s}.
For condensation outside horizontal tubes, change 0.943 to 0.73 and replace L with the tube outside diameter.

Heat Transfer to/from Bodies Immersed in a Large Body

of Flowing Fluid

In all cases, evaluate fluid properties at average temperature between that of the body and that of the flowing fluid.

For flow parallel to a constant-temperature flat plate of length L (m)
$\begin{array}{ll}\mathrm{Nu}=0.648 \operatorname{Re}^{0.5} \mathrm{Pr}^{1 / 3} & \left(\operatorname{Re}<10^{5}\right) \\ \mathrm{Nu}=0.0366 \operatorname{Re}^{0.8} \operatorname{Pr}^{1 / 3} & \left(\operatorname{Re}>10^{5}\right)\end{array}$
Use the plate length in the evaluation of the Nusselt and Reynolds numbers.
For flow perpendicular to the axis of a constant-temperature circular cylinder
$\mathrm{Nu}=c \operatorname{Re}^{n} \operatorname{Pr}^{1 / 3}$
(values of c and n follow)
Use the cylinder diameter in the evaluation of the Nusselt and Reynolds numbers.

$\boldsymbol{R e}$	\boldsymbol{n}	\boldsymbol{c}
$1-4$	0.330	0.989
$4-40$	0.385	0.911
$40-4,000$	0.466	0.683
$4,000-40,000$	0.618	0.193
$40,000-250,000$	0.805	0.0266

For flow past a constant-temperature sphere. $\mathrm{Nu}=2.0+$ $0.60 \mathrm{Re}^{0.5} \mathrm{Pr}^{1 / 3}$
$(1<\operatorname{Re}<70,000,0.6<\operatorname{Pr}<400)$
Use the sphere diameter in the evaluation of the Nusselt and Reynolds numbers.

CONDUCTIVE HEAT TRANSFER

Steady Conduction With Internal Energy Generation

For one-dimensional steady conduction, the equation is

$$
d^{2} T / d x^{2}+\dot{Q}_{g e n} / k=0, \text { where }
$$

$\dot{Q}_{\text {gen }}=$ the heat generation rate per unit volume and
$k=$ the thermal conductivity.
For a plane wall:

$$
\begin{aligned}
& T(x)=\frac{\dot{Q}_{\mathrm{gen}} L^{2}}{2 \mathrm{k}}\left(1-\frac{x^{2}}{L^{2}}\right)+\left(\frac{T s^{2}-T s^{1}}{2}\right)\left(\frac{x}{L}\right)+\left(\frac{T s^{1}+T s^{2}}{2}\right) \\
& \quad \dot{Q}_{1}^{\prime \prime}+\dot{Q}_{2}^{\prime \prime}=2 \dot{Q}_{\mathrm{gen}} L, \text { where } \\
& \dot{Q}_{1}^{\prime \prime}=k(d T / d x)_{-L} \\
& \dot{Q}_{2}^{\prime \prime}=-k(d T / d x)_{L}
\end{aligned}
$$

For a long circular cylinder:

$$
\begin{aligned}
& \frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)+\frac{\dot{Q}_{\mathrm{gen}}}{k}=0 \\
& T(r)=\frac{\dot{Q}_{\mathrm{gen}} r_{0}^{2}}{4 k}\left(1-\frac{r^{2}}{r_{0}^{2}}\right)+T_{s} \\
& \dot{Q}^{\prime}=\pi r_{0}^{2} \dot{Q}_{\mathrm{gen}}, \quad \text { where }
\end{aligned}
$$

$\dot{Q}^{\prime}=$ the heat-transfer rate from the cylinder per unit length.

Transient Conduction Using the Lumped Capacitance Method

If the temperature may be considered uniform within the body at any time, the change of body temperature is given by

$$
\dot{Q}=h A_{s}\left(T-T_{\infty}\right)=-\rho c_{p} V(d T / d t)
$$

The temperature variation with time is

$$
T-T_{\infty}=\left(T_{i}-T_{\infty}\right) \mathrm{e}^{-\left(h A_{s} / \rho c_{p} V\right) t}
$$

The total heat transferred up to time t is
$Q_{\text {total }}=\rho c_{P} V\left(T_{i}-T\right)$, where
$\rho=$ density,
$V=$ volume,
$c_{P}=$ heat capacity,
$t=$ time,
$A_{s}=$ surface area of the body,
$T=$ temperature, and
$h=$ the heat-transfer coefficient.
The lumped capacitance method is valid if
Biot number $=\mathrm{Bi}=h V / k A_{s} \ll 1$

NATURAL (FREE) CONVECTION

For free convection between a vertical flat plate (or a vertical cylinder of sufficiently large diameter) and a large body of stationary fluid,

$$
h=C(k / L) \mathrm{Ra}_{L}{ }^{n} \text {, where }
$$

$L \quad=$ the length of the plate in the vertical direction
$\operatorname{Ra}_{L}=$ Rayleigh Number $=\frac{g \beta\left(T_{s}-T_{\infty}\right) L^{3}}{v^{2}} \operatorname{Pr}$
$T_{s}=$ surface temperature,
$T_{\infty}=$ fluid temperature,
$\beta=$ coefficient of thermal expansion $\quad\left(\frac{2}{T_{s}+T_{\infty}}\right.$ for an ideal gas where T is absolute temperature), and
$v \quad=$ kinematic viscosity.

Range of $\mathbf{R a}_{\boldsymbol{L}}$	\boldsymbol{C}	\boldsymbol{n}
$10^{4}-10^{9}$	0.59	$1 / 4$
$10^{9}-10^{13}$	0.10	$1 / 3$

For free convection between a long horizontal cylinder and a large body of stationary fluid

$$
\begin{aligned}
& h=C(k / D) \mathrm{Ra}_{D}^{n}, \text { where } \\
& \mathrm{Ra}_{D}= \frac{g \beta\left(T_{s}-T_{\infty}\right) D^{3}}{v^{2}} \operatorname{Pr}
\end{aligned}
$$

Range of $\mathbf{R a}_{\boldsymbol{D}}$	\boldsymbol{C}	\boldsymbol{n}
$10^{-3}-10^{2}$	1.02	0.148
$10^{2}-10^{4}$	0.850	0.188
$10^{4}-10^{7}$	0.480	0.250
$10^{7}-10^{12}$	0.125	0.333

RADIATION

Two-Body Problem

Applicable to any two diffuse-gray surfaces that form an enclosure.

$$
\dot{Q}_{12}=\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}+\frac{1}{A_{1} F_{12}}+\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}
$$

Generalized Cases

Radiation Shields

One-dimensional geometry with low-emissivity shield inserted between two parallel plates.

$\dot{Q}_{12}=\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}+\frac{1}{A_{1} F_{13}}+\frac{1-\varepsilon_{3,1}}{\varepsilon_{3,1} A_{3}}+\frac{1-\varepsilon_{3,2}}{\varepsilon_{3,2} A_{3}}+\frac{1}{A_{3} F_{32}}+\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}$

Reradiating Surface

Reradiating surfaces are considered to be insulated, or adiabatic $\left(Q_{1}=0\right)$.

$\dot{Q}_{12}=\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}+\frac{1}{A_{1} F_{12}+\left[\left(\frac{1}{A_{1} F_{1 R}}\right)+\left(\frac{1}{A_{2} F_{2 R}}\right)\right]^{-1}+\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}}$

Shape Factor Relations

Reciprocity relations:

$$
A_{i} F_{i j}=A_{j} F_{j i}
$$

Summation rule:

$$
\sum_{j=1}^{N} F_{i j}=1
$$

TRANSPORT PHENOMENA

MOMENTUM, HEAT, AND MASS TRANSFER ANALOGY

For the equations which apply to turbulent flow in circular tubes, the following definitions apply:
$\mathrm{Nu}=$ Nusselt Number $\left[\frac{h D}{k}\right]$
$\operatorname{Pr}=$ Prandtl Number $\left(c_{P} \mu / k\right)$,
$\operatorname{Re}=$ Reynolds Number $(D V \rho / \mu)$,
Sc $=$ Schmidt Number $\left[\mu /\left(\rho D_{m}\right)\right]$,
Sh $=$ Sherwood Number $\left(k_{m} D / D_{m}\right)$,
St $=$ Stanton Number $\left[h /\left(c_{p} G\right)\right]$
$c_{m}=$ concentration $\left(\mathrm{mol} / \mathrm{m}^{3}\right)$,
$c_{P}=$ heat capacity of fluid $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$,
$D=$ tube inside diameter (m),
$D_{m}=$ diffusion coefficient ($\mathrm{m}^{2} / \mathrm{s}$),
$\left(d c_{m} / d y\right)_{w}=$ concentration gradient at the wall $\left(\mathrm{mol} / \mathrm{m}^{4}\right)$,
$(d T / d y)_{w}=$ temperature gradient at the wall $(\mathrm{K} / \mathrm{m})$,
$(d v / d y)_{w}=$ velocity gradient at the wall $\left(\mathrm{s}^{-1}\right)$,
$f=$ Moody friction factor,
$G=$ mass velocity $\left[\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$,
$h=$ heat-transfer coefficient at the wall $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$,
$k=$ thermal conductivity of fluid $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$,
$k_{m}=$ mass-transfer coefficient (m/s),
$L=$ length over which pressure drop occurs (m),
$(N / A)_{w}=$ inward mass-transfer flux at the wall $\left[\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$, $(\dot{Q} / A)_{w}=$ inward heat-transfer flux at the wall $\left(\mathrm{W} / \mathrm{m}^{2}\right)$,
$y=$ distance measured from inner wall toward centerline (m),
$\Delta c_{m}=$ concentration difference between wall and bulk fluid $\left(\mathrm{mol} / \mathrm{m}^{3}\right)$,
$\Delta T=$ temperature difference between wall and bulk fluid (K),
$\mu=$ absolute dynamic viscosity ($\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$), and
$\tau_{w}=$ shear stress (momentum flux) at the tube wall $\left(\mathrm{N} / \mathrm{m}^{2}\right)$.
Definitions already introduced also apply.
Rate of transfer as a function of gradients at the wall

Momentum Transfer:

$$
\tau_{w}=-\mu\left(\frac{d v}{d y}\right)_{w}=-\frac{f \rho V^{2}}{8}=\left(\frac{D}{4}\right)\left(-\frac{\Delta p}{L}\right)_{f}
$$

Heat Transfer:

$$
\left(\frac{\dot{Q}}{A}\right)_{w}=-k\left(\frac{d T}{d y}\right)_{w}
$$

Mass Transfer in Dilute Solutions:

$$
\left(\frac{N}{A}\right)_{w}=-D_{m}\left(\frac{d c_{m}}{d y}\right)_{w}
$$

Rate of transfer in terms of coefficients

Momentum Transfer:

$$
\tau_{w}=\frac{f \rho V^{2}}{8}
$$

Heat Transfer:

$$
\left(\frac{\dot{Q}}{A}\right)_{w}=h \Delta T
$$

Mass Transfer:

$$
\left(\frac{N}{A}\right)_{w}=k_{m} \Delta c_{m}
$$

Use of friction factor (f) to predict heat-transfer and masstransfer coefficients (turbulent flow)
Heat Transfer:

$$
j_{H}=\left(\frac{\mathrm{Nu}}{\operatorname{Re~Pr}}\right) \operatorname{Pr}^{2 / 3}=\frac{f}{8}
$$

Mass Transfer:

$$
j_{M}=\left(\frac{\mathrm{Sh}}{\mathrm{ReSc}}\right) \mathrm{Sc}^{2 / 3}=\frac{f}{8}
$$

CHEMISTRY

Avogadro's Number: The number of elementary particles in a mol of a substance.

$$
\begin{aligned}
& 1 \mathrm{~mol}=1 \text { gram-mole } \\
& 1 \mathrm{~mol}=6.02 \times 10^{23} \text { particles }
\end{aligned}
$$

A mol is defined as an amount of a substance that contains as many particles as 12 grams of ${ }^{12} \mathrm{C}$ (carbon 12). The elementary particles may be atoms, molecules, ions, or electrons.

ACIDS AND BASES (aqueous solutions)

$$
\mathrm{pH}=\log _{10}\left(\frac{1}{\left[\mathrm{H}^{+}\right]}\right), \quad \text { where }
$$

$\left[\mathrm{H}^{+}\right]=$molar concentration of hydrogen ion,
Acids have $\mathrm{pH}<7$.
Bases have pH >7.

ELECTROCHEMISTRY

Cathode - The electrode at which reduction occurs.
Anode - The electrode at which oxidation occurs.
Oxidation - The loss of electrons.
Reduction - The gaining of electrons.
Oxidizing Agent - A species that causes others to become oxidized.
Reducing Agent - A species that causes others to be reduced. Cation - Positive ion
Anion - Negative ion

DEFINITIONS

Molarity of Solutions - The number of gram moles of a substance dissolved in a liter of solution.

Molality of Solutions - The number of gram moles of a substance per 1,000 grams of solvent.

Normality of Solutions - The product of the molarity of a solution and the number of valences taking place in a reaction.

Equivalent Mass - The number of parts by mass of an element or compound which will combine with or replace directly or indirectly 1.008 parts by mass of hydrogen, 8.000 parts of oxygen, or the equivalent mass of any other element or compound. For all elements, the atomic mass is the product of the equivalent mass and the valence.
Molar Volume of an Ideal Gas $\left[\right.$ at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ and $1 \mathrm{~atm}(14.7$ psia)]; $22.4 \mathrm{~L} /\left(\mathrm{g}\right.$ mole) $\left[359 \mathrm{ft}^{3} /(\mathrm{lb}\right.$ mole $\left.)\right]$.
Mole Fraction of a Substance - The ratio of the number of moles of a substance to the total moles present in a mixture of substances. Mixture may be a solid, a liquid solution, or a gas.

Equilibrium Constant of a Chemical Reaction

$$
\begin{aligned}
& a A+b B \rightleftarrows c C+d D \\
& K_{\mathrm{eq}}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{aligned}
$$

Le Chatelier's Principle for Chemical Equilibrium - When a stress (such as a change in concentration, pressure, or temperature) is applied to a system in equilibrium, the equilibrium shifts in such a way that tends to relieve the stress.

Heats of Reaction, Solution, Formation, and Combustion Chemical processes generally involve the absorption or evolution of heat. In an endothermic process, heat is absorbed (enthalpy change is positive). In an exothermic process, heat is evolved (enthalpy change is negative).
Solubility Product of a slightly soluble substance $A B$:

$$
A_{m} B_{n} \rightarrow m A^{n+}+n B^{m-}
$$

Solubility Product Constant $=K_{\mathrm{SP}}=\left[A^{+}\right]^{m}\left[B^{-}\right]^{n}$
Metallic Elements - In general, metallic elements are distinguished from non-metallic elements by their luster, malleability, conductivity, and usual ability to form positive ions.

Non-Metallic Elements - In general, non-metallic elements are not malleable, have low electrical conductivity, and rarely form positive ions.

Faraday's Law - In the process of electrolytic changes, equal quantities of electricity charge or discharge equivalent quantities of ions at each electrode. One gram equivalent weight of matter is chemically altered at each electrode for 96,485 coulombs, or one Faraday, of electricity passed through the electrolyte.
A catalyst is a substance that alters the rate of a chemical reaction and may be recovered unaltered in nature and amount at the end of the reaction. The catalyst does not affect the position of equilibrium of a reversible reaction.
The atomic number is the number of protons in the atomic nucleus. The atomic number is the essential feature which distinguishes one element from another and determines the position of the element in the periodic table.
Boiling Point Elevation - The presence of a non-volatile solute in a solvent raises the boiling point of the resulting solution compared to the pure solvent; i.e., to achieve a given vapor pressure, the temperature of the solution must be higher than that of the pure substance.
Freezing Point Depression - The presence of a non-volatile solute in a solvent lowers the freezing point of the resulting solution compared to the pure solvent.

PERIODIC TABLE OF ELEMENTS

	$\begin{gathered} \hline 1 \\ \mathbf{H} \\ 1.0079 \end{gathered}$					Atomic Number Symbol Atomic Weight												$\begin{gathered} \hline 2 \\ \mathrm{He} \\ 4.0026 \end{gathered}$
	$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.941 \end{gathered}$	$\begin{gathered} \hline 4 \\ \mathbf{B e} \\ 9.0122 \end{gathered}$											$\begin{gathered} \hline 5 \\ \mathbf{B} \\ 10.811 \end{gathered}$	$\begin{gathered} \hline 6 \\ \mathbf{C} \\ 12.011 \end{gathered}$	$\begin{gathered} \hline 7 \\ \mathbf{N} \\ 14.007 \end{gathered}$	$\begin{gathered} \hline 8 \\ \mathbf{O} \\ 15.999 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 18.998 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.179 \end{gathered}$
	$\begin{gathered} \hline 11 \\ \mathbf{N a} \\ 22.990 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.305 \end{gathered}$											$\begin{gathered} 13 \\ \text { Al } \\ 26.981 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.086 \end{gathered}$	15 \mathbf{P} 30.974	$\begin{gathered} \hline 16 \\ \mathbf{S} \\ 32.066 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.453 \end{gathered}$	$\begin{gathered} \hline 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$
	$\begin{gathered} 19 \\ \mathbf{K} \\ 39.098 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.078 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ 44.956 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} \hline 23 \\ \mathbf{V} \\ 50.941 \end{gathered}$	$\begin{gathered} \hline 24 \\ \mathbf{C r} \\ 51.996 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.938 \end{gathered}$	$\begin{gathered} \hline 26 \\ \mathrm{Fe} \\ 55.847 \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { Co } \\ 58.933 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.546 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.61 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.921 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
	$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.468 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.906 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.224 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.906 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ (98) \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.41 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.71 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \text { Te } \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.29 \end{gathered}$
$\hat{9}$	$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} \hline 56 \\ \mathbf{B a} \\ 137.33 \end{gathered}$	$\begin{gathered} \hline 57^{*} \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} \hline 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} \hline 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \boldsymbol{\operatorname { R e }} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} \hline 78 \\ \mathbf{P t} \\ 195.08 \end{gathered}$	$\begin{gathered} \hline 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \mathbf{T i} \\ 204.38 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
	$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} \hline 88 \\ \text { Ra } \\ 226.02 \end{gathered}$	$\begin{gathered} \hline 89^{* *} \\ \text { Ac } \\ 227.03 \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \mathbf{H a} \\ (262) \end{gathered}$													
	*Lanthanide Series			$\begin{gathered} \hline 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} \hline 59 \\ \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.36 \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Но } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} \hline 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$	
	**Actini	Series		$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} \hline 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ 237.05 \end{gathered}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ (244) \end{gathered}$	95 Am (243)	$\begin{gathered} 96 \\ \mathrm{Cm} \\ (247) \end{gathered}$	97 Bk (247)	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (252) \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$	

IMPORTANT FAMILIES OF ORGANIC COMPOUNDS

		FAMILY											
		Alkane	Alkene	Alkyne	Arene	Haloalkane	Alcohol	Ether	Amine	Aldehyde	Carboxylic Acid	Ester	
	Specific Example	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	$\mathrm{HC} \equiv \mathrm{CH}$		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$				
	IUPAC Name	Ethane	Ethene or Ethylene	Ethyne or Acetylene	Benzene	Chloroethane	Ethanol	Methoxymethane	Methanamine	Ethanal	Ethanoic Acid	Methyl ethanoate	
	Common Name	Ethane	Ethylene	Acetylene	Benzene	Ethyl chloride	Ethyl alcohol	Dimethyl ether	Methylamine	Acetaldehyde	Acetic Acid	Methyl acetate	
ลว	General Formula	RH	$\begin{gathered} \mathrm{RCH}=\mathrm{CH}_{2} \\ \mathrm{RCH}=\mathrm{CHR} \\ \mathrm{R}_{2} \mathrm{C}=\mathrm{CHR} \\ \mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{RC} \equiv \mathrm{CH} \\ & \mathrm{RC} \equiv \mathrm{CR} \end{aligned}$	ArH	RX	ROH	ROR	$\begin{gathered} \mathrm{RNH}_{2} \\ \mathrm{R}_{2} \mathrm{NH} \\ \mathrm{R}_{3} \mathrm{~N} \end{gathered}$		$\underset{\mathrm{RCOH}}{\\|_{\mathrm{RCO}}}$	$\stackrel{\mathrm{O}}{\mathrm{RCOR}}$	
	Functional Group	$\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds		$-\mathrm{C} \equiv \mathrm{C}-$	Aromatic Ring								

MATERIALS SCIENCE/STRUCTURE OF MATTER

CRYSTALLOGRAPHY

Common Metallic Crystal Structures

body-centered cubic, face-centered cubic, and hexagonal close-packed.
-
Body-
Centered
Cubic
(BCC)

Face-
Centered
Cubic
(FCC)

Hexagonal
Close-Packed (HCP)

Number of Atoms in a Cell

BCC: 2
FCC: 4
HCP: 6

Packing Factor

The packing factor is the volume of the atoms in a cell (assuming touching, hard spheres) divided by the total cell volume.

BCC: 0.68
FCC: 0.74
HCP: 0.74

Coordination Number

The coordination number is the number of closest neighboring (touching) atoms in a given lattice.

Miller Indices

The rationalized reciprocal intercepts of the intersections of the plane with the crystallographic axes:
-

(111) plane. (axis intercepts at $x=y=z$)
(112) plane. (axis intercepts at $x=1, y=1, z=1 / 2$)

(010) planes in cubic structures. (a) Simple cubic. (b) BCC. (axis intercepts at $x=\infty, y=1, z=\infty$)

(110) planes in cubic structures. (a) Simple cubic. (b) BCC. (axis intercepts at $x=1, y=1, z=\infty$)

ATOMIC BONDING

Primary Bonds

Ionic (e.g., salts, metal oxides)
Covalent (e.g., within polymer molecules)
Metallic (e.g., metals)
\bullet Flinn, Richard A. \& Paul K. Trojan, Engineering Materials \& Their Application, 4th Ed. Copyright © 1990 by Houghton Mifflin Co. Figure used with permission.

- Van Vlack, L., Elements of Materials Science \& Engineering, Copyright © 1989 by Addison-Wesley Publishing Co., Inc. Diagram reprinted with permission of the publisher.

CORROSION

A table listing the standard electromotive potentials of metals is shown on page 67.
For corrosion to occur, there must be an anode and a cathode in electrical contact in the presence of an electrolyte.

Anode Reaction (oxidation)

$\mathrm{M}^{0} \rightarrow \mathrm{M}^{n+}+n \mathrm{e}^{-}$

Possible Cathode Reactions (reduction)

$$
\begin{aligned}
& 1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-} \\
& 1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 3 \mathrm{H}_{2} \mathrm{O} \\
& \quad 2 \mathrm{e}^{-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}
\end{aligned}
$$

When dissimilar metals are in contact, the more electropositive one becomes the anode in a corrosion cell. Different regions of carbon steel can also result in a corrosion reaction: e.g., cold-worked regions are anodic to non-cold-worked; different oxygen concentrations can cause oxygen-deficient region to become cathodic to oxygen-rich regions; grain boundary regions are anodic to bulk grain; in multiphase alloys, various phases may not have the same galvanic potential.

DIFFUSION

Diffusion coefficient

$$
D=D_{\mathrm{o}} \mathrm{e}^{-Q(R T)} \text {, where }
$$

$D=$ the diffusion coefficient,
$D_{\mathrm{o}}=$ the proportionality constant,
$Q=$ the activation energy,
$R=$ the gas constant $[1.987 \mathrm{cal} /(\mathrm{g} \mathrm{mol} \cdot \mathrm{K})]$, and
$T=$ the absolute temperature.

BINARY PHASE DIAGRAMS

Allows determination of (1) what phases are present at equilibrium at any temperature and average composition, (2) the compositions of those phases, and (3) the fractions of those phases.

> Eutectic reaction (liquid \rightarrow two solid phases)
> Eutectoid reaction (solid \rightarrow two solid phases)
> Peritectic reaction (liquid + solid \rightarrow solid)
> Pertectoid reaction (two solid phases \rightarrow solid)

Lever Rule

The following phase diagram and equations illustrate how the weight of each phase in a two-phase system can be determined:

(In diagram, $L=$ liquid) If $x=$ the average composition at temperature T, then

$$
\begin{aligned}
& \text { wt } \% \alpha=\frac{x_{\beta}-x}{x_{\beta}-x_{\alpha}} \times 100 \\
& \text { wt } \% \beta=\frac{x-x_{\alpha}}{x_{\beta}-x_{\alpha}} \times 100
\end{aligned}
$$

Iron-Iron Carbide Phase Diagram

Gibbs Phase Rule

$P+F=C+2$, where
$P=$ the number of phases that can coexist in equilibrium,
$F=$ the number of degrees of freedom, and
$C=$ the number of components involved.

THERMAL PROCESSING

Cold working (plastically deforming) a metal increases strength and lowers ductility.
Raising temperature causes (1) recovery (stress relief), (2) recrystallization, and (3) grain growth. Hot working allows these processes to occur simultaneously with deformation.
Quenching is rapid cooling from elevated temperature, preventing the formation of equilibrium phases.
In steels, quenching austenite [FCC (γ) iron] can result in martensite instead of equilibrium phases-ferrite $[\operatorname{BCC}(\alpha)$ iron] and cementite (iron carbide).

TESTING METHODS

Standard Tensile Test

Using the standard tensile test, one can determine elastic modulus, yield strength, ultimate tensile strength, and ductility (\% elongation).

Endurance Test

Endurance tests (fatigue tests to find endurance limit) apply a cyclical loading of constant maximum amplitude. The plot (usually semi-log or $\log -\log$) of the maximum stress (σ) and the number (N) of cycles to failure is known as an $S-N$ plot. (Typical of steel, may not be true for other metals; i.e., aluminum alloys, etc.)

The endurance stress (endurance limit or fatigue limit) is the maximum stress which can be repeated indefinitely without causing failure. The fatigue life is the number of cycles required to cause failure for a given stress level.

Impact Test

The Charpy Impact Test is used to find energy required to fracture and to identify ductile to brittle transition.

Impact tests determine the amount of energy required to cause failure in standardized test samples. The tests are repeated over a range of temperatures to determine the transition temperature.

HARDENABILITY

Hardenability is the "ease" with which hardness may be attained. Hardness is a measure of resistance to plastic deformation.

(\#2) and (\#8) indicated ASTM grain size
Hardenability Curves for Six Steels
-

(a)

(b)

Cooling Rates for Bars Quenched in
(a) Agitated Water and (b) Agitated Oil.

[^0] Co., Inc. Diagrams reprinted with permission of the publisher.

ASTM GRAIN SIZE

$S_{V}=2 P_{L}$

$$
\begin{aligned}
& N_{\left(0.0645 \mathrm{~mm}^{2}\right)}=2 n-1 \\
& \frac{N_{\text {actual }}}{\text { Actual Area }}=\frac{N}{\left(0.0645 \mathrm{~mm}^{2}\right)}
\end{aligned}
$$

where
$S_{V}=$ grain-boundary surface per unit volume,
$P_{L}=$ number of points of intersection per unit length between the line and the boundaries,
$N=$ number of grains observed in a area of $0.0645 \mathrm{~mm}^{2}$, and $n=$ grain size (nearest integer >1).

COMPOSITE MATERIALS

$\rho_{c}=\Sigma f_{i} \rho_{i}$
$C_{c}=\Sigma f_{i} c_{i}$
$E_{c}=\Sigma f_{i} E_{i}$
where
$\rho_{c}=$ density of composite,
$C_{c}=$ heat capacity of composite per unit volume,
$E_{c}=$ Young's modulus of composite,
$f_{i}=$ volume fraction of individual material,
$c_{i}=$ heat capacity of individual material per unit volume, and $E_{i}=$ Young's modulus of individual material.

HALF-LIFE
$N=N_{o} e^{-0.693 t / \tau}$, where
$N_{o}=$ original number of atoms,
$N=$ final number of atoms,
$t=$ time, and
$\tau=$ half-life .

Material	Density $\boldsymbol{\rho}$ $\mathbf{M g} / \mathbf{m}^{\mathbf{3}}$	Young's Modulus \boldsymbol{E} $\mathbf{G P a}$	$\boldsymbol{E} / \boldsymbol{\rho}$ $\mathbf{N} \cdot \mathbf{m} / \mathbf{g}$
Aluminum	2.7	70	26,000
Steel	7.8	205	26,000
Magnesium	1.7	45	26,000
Glass	2.5	70	28,000
Polystyrene	1.05	2	2,700
Polyvinyl Chloride	1.3	<4	$<3,500$
Alumina fiber	3.9	400	100,000
Aramide fiber	1.3	125	100,000
Boron fiber	2.3	400	170,000
Beryllium fiber	1.9	300	160,000
BeO fiber	3.0	400	130,000
Carbon fiber	2.3	700	300,000
Silicon Carbide fiber	3.2	400	120,000

Also

$$
\begin{aligned}
& (\Delta L / L)_{1}=(\Delta L / L)_{2} \\
& (\alpha \Delta T+e)_{1}=(\alpha \Delta T+e)_{2} \\
& {[\alpha \Delta T+(F / A) / E]_{1}=[\alpha \Delta T+(F / A) / E]_{2}}
\end{aligned}
$$

where
$\Delta L=$ change in length of a material,
$L=$ original length of the material,
$\alpha=$ coefficient of expansion for a material,
$\Delta T=$ change in temperature for the material,
$e=$ elongation of the material,
$F=$ force in a material,
$A=$ cross-sectional area of the material, and
$E=$ Young's modulus for the material.

ELECTRIC CIRCUITS

UNITS

The basic electrical units are coulombs for charge, volts for voltage, amperes for current, and ohms for resistance and impedance.

ELECTROSTATICS

$$
\mathbf{F}_{2}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon r^{2}} \mathbf{a}_{r 12}, \quad \text { where }
$$

$F_{2}=$ the force on charge 2 due to charge 1,
$Q_{i}=$ the i th point charge,
$r=$ the distance between charges 1 and 2,
$\mathbf{a}_{\mathrm{r} 12}=$ a unit vector directed from 1 to 2 , and
$\varepsilon \quad=$ the permittivity of the medium.
For free space or air:

$$
\varepsilon=\varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \text { Farads/meter }
$$

Electrostatic Fields

Electric field intensity \mathbf{E} (volts/meter) at point 2 due to a point charge Q_{1} at point 1 is

$$
\mathbf{E}=\frac{Q_{1}}{4 \pi \varepsilon r^{2}} \mathbf{a}_{r 12}
$$

For a line charge of density $\rho_{L} \mathrm{C} / \mathrm{m}$ on the z-axis, the radial electric field is

$$
\mathbf{E}_{L}=\frac{\rho_{L}}{2 \pi \varepsilon r} \mathbf{a}_{r}
$$

For a sheet charge of density $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$ in the $x-y$ plane:

$$
\mathbf{E}_{s}=\frac{\rho_{s}}{2 \varepsilon} \mathbf{a}_{z}, z>0
$$

Gauss' law states that the integral of the electric flux density $\mathbf{D}=\varepsilon \mathbf{E}$ over a closed surface is equal to the charge enclosed or

$$
Q_{\text {encl }}=\oint_{S} \varepsilon \mathbf{E} \cdot d \mathbf{S}
$$

The force on a point charge Q in an electric field with intensity \mathbf{E} is $\mathbf{F}=\mathbf{Q E}$.
The work done by an external agent in moving a charge Q in an electric field from point p_{1} to point p_{2} is

$$
W=-Q \int_{p_{1}}^{p_{2}} \mathbf{E} \cdot d \mathbf{l}
$$

The energy stored W_{E} in an electric field \mathbf{E} is

$$
W_{E}=(1 / 2) \iiint \int_{V} \varepsilon|\mathbf{E}|^{2} d v
$$

Voltage

The potential difference V between two points is the work per unit charge required to move the charge between the points.
For two parallel plates with potential difference V, separated by distance d, the strength of the E field between the plates is

$$
E=\frac{V}{d}
$$

directed from the + plate to the - plate.

Current

Electric current $i(t)$ through a surface is defined as the rate of charge transport through that surface or

$$
i(t)=d q(t) / d t, \text { which is a function of time } t
$$

since $q(t)$ denotes instantaneous charge.
A constant $i(t)$ is written as I, and the vector current density in amperes $/ \mathrm{m}^{2}$ is defined as \mathbf{J}.

Magnetic Fields

For a current carrying wire on the z-axis

$$
\mathbf{H}=\frac{\mathbf{B}}{\mu}=\frac{I \mathbf{a}_{\phi}}{2 \pi r}, \quad \text { where }
$$

$\mathbf{H}=$ the magnetic field strength (amperes/meter),
$\mathbf{B}=$ the magnetic flux density (tesla),
$\mathbf{a}_{\phi}=$ the unit vector in positive ϕ direction in cylindrical coordinates,
$I=$ the current, and
$\mu=$ the permeability of the medium.
For air: $\mu=\mu_{o}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
Force on a current carrying conductor in a uniform magnetic field is

$$
\mathbf{F}=\Omega \mathbf{L} \times \mathbf{B}, \text { where }
$$

$\mathbf{L}=$ the length vector of a conductor.
The energy stored W_{H} in a magnetic field \mathbf{H} is

$$
W_{H}=(1 / 2) \iiint \int_{V} \boldsymbol{\mu}|\mathbf{H}|^{2} d v
$$

Induced Voltage

Faraday's Law; For a coil of N turns enclosing
flux ϕ :

$$
v=-N d \phi / d t, \text { where }
$$

$v=$ the induced voltage and
$\phi=$ the flux (webers) enclosed by the N conductor turns and

$$
\phi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

Resistivity

For a conductor of length L, electrical resistivity ρ, and area A, the resistance is

$$
R=\frac{\rho L}{A}
$$

For metallic conductors, the resistivity and resistance vary linearly with changes in temperature according to the following relationships:

$$
\begin{aligned}
& \rho=\rho_{\mathrm{o}}\left[1+\alpha\left(T-T_{\mathrm{o}}\right)\right], \text { and } \\
& R=R_{\mathrm{o}}\left[1+\alpha\left(T-T_{\mathrm{o}}\right)\right], \text { where }
\end{aligned}
$$

ρ_{o} is resistivity at $T_{\mathrm{o}}, R_{\mathrm{o}}$ is the resistance at T_{o}, and α is the temperature coefficient.
Ohm's Law: $\quad V=I R ; v(t)=i(t) R$

Resistors in Series and Parallel

For series connections, the current in all resistors is the same and the equivalent resistance for n resistors in series is

$$
R_{\mathrm{T}}=R_{1}+R_{2}+\ldots+R_{n}
$$

For parallel connections of resistors, the voltage drop across each resistor is the same and the resistance for n resistors in parallel is

$$
R_{\mathrm{T}}=1 /\left(1 / R_{1}+1 / R_{2}+\ldots+1 / R_{n}\right)
$$

For two resistors R_{1} and R_{2} in parallel

$$
R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Power in a Resistive Element

$$
P=V I=\frac{V^{2}}{R}=I^{2} R
$$

Kirchhoff's Laws

Kirchhoff's voltage law for a closed loop is expressed by

$$
\Sigma V_{\mathrm{rises}}=\Sigma V_{\mathrm{drops}}
$$

Kirchhoff's current law for a closed surface is

$$
\Sigma I_{\mathrm{in}}=\Sigma I_{\mathrm{out}}
$$

SOURCE EQUIVALENTS

For an arbitrary circuit

The Thévenin equivalent is

The open circuit voltage $V_{\text {oc }}$ is $V_{a}-V_{b}$, and the short circuit current is I_{sc} from a to b.
The Norton equivalent circuit is

where I_{sc} and R_{eq} are defined above.
A load resistor R_{L} connected across terminals a and b will draw maximum power when $R_{L}=R_{\text {eq. }}$.

CAPACITORS AND INDUCTORS

The charge $q_{C}(t)$ and voltage $v_{C}(t)$ relationship for a capacitor C in farads is

$$
C=q_{C}(t) / v_{C}(t) \quad \text { or } \quad q_{C}(t)=C v_{C}(t)
$$

A parallel plate capacitor of area A with plates separated a distance d by an insulator with a permittivity ε has a capacitance

$$
C=\frac{\varepsilon A}{d}
$$

The current-voltage relationships for a capacitor are

$$
v_{C}(t)=v_{C}(0)+\frac{1}{C} \int_{0}^{t} i_{C}(\tau) d \tau
$$

and $\quad i_{C}(t)=C\left(d v_{C} / d t\right)$
The energy stored in a capacitor is expressed in joules and given by

$$
\text { Energy }=C v_{C}^{2} / 2=q_{C}^{2} / 2 C=q_{C} v_{C} / 2
$$

The inductance L of a coil is

$$
L=N \phi / i_{L}
$$

and using Faraday's law, the voltage-current relations for an inductor are

$$
\begin{aligned}
& v_{L}(t)=L\left(d i_{L} / d t\right) \\
& i_{L}(t)=i_{L}(0)+\frac{1}{L} \int_{0}^{t} v_{L}(\tau) d \tau, \quad \text { where }
\end{aligned}
$$

$v_{L}=$ inductor voltage,
$L=$ inductance (henrys), and
$i=$ current (amperes).
The energy stored in an inductor is expressed in joules and given by

$$
\text { Energy }=L i_{L}^{2} / 2
$$

Capacitors and Inductors in Parallel and Series

Capacitors in Parallel

$$
C_{\mathrm{eq}}=C_{1}+C_{2}+\ldots+C_{n}
$$

Capacitors in Series

$$
C_{\mathrm{eq}}=\frac{1}{1 / C_{1}+1 / C_{2}+\ldots+1 / C_{n}}
$$

Inductors In Parallel

$$
L_{\mathrm{eq}}=\frac{1}{1 / L_{1}+1 / L_{2}+\ldots+1 / L_{n}}
$$

Inductors In Series

$$
L_{\mathrm{eq}}=L_{1}+L_{2}+\ldots+L_{n}
$$

RC AND RL TRANSIENTS

$t \geq 0 ; v_{C}(t)=v_{C}(0) e^{-t / R C}+V\left(1-e^{-t / R C}\right)$
$i(t)=\left\{\left[V-v_{C}(0)\right] / R\right\} e^{-t / R C}$
$v_{R}(t)=i(t) R=\left[V-v_{C}(0)\right] e^{-t / R C}$

$$
\begin{aligned}
t \geq 0 ; \quad i(t) & =i(0) e^{-R t / L}+\frac{V}{R}\left(1-e^{-R t / L}\right) \\
v_{R}(t) & =i(t) R=i(0) R e^{-R / L}+V\left(1-e^{-R / L}\right) \\
v_{L}(t) & =L(d i / d t)=-i(0) R e^{-R / L}+V e^{-R / L}
\end{aligned}
$$

where $v(0)$ and $i(0)$ denote the initial conditions and the parameters $R C$ and L / R are termed the respective circuit time constants.

OPERATIONAL AMPLIFIERS

$v_{\mathrm{o}}=A\left(v_{1}-v_{2}\right)$, where
A is large ($>10^{4}$) and

$v_{1}-v_{2}$ is small enough so as not to saturate the amplifier.
For the ideal operational amplifier, assume that the input currents are zero and that the gain A is infinite so when operating linearly $v_{2}-v_{1}=0$.
For the two-source configuration with an ideal operational amplifier,

$$
v_{o}=-\frac{R_{2}}{R_{1}} v_{a}+\left(1+\frac{R_{2}}{R_{1}}\right) v_{b}
$$

If $v_{\mathrm{a}}=0$, we have a non-inverting amplifier with

$$
v_{o}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{b}
$$

If $v_{\mathrm{b}}=0$, we have an inverting amplifier with

$$
v_{o}=-\frac{R_{2}}{R_{1}} v_{a}
$$

AC CIRCUITS

For a sinusoidal voltage or current of frequency $f(\mathrm{~Hz})$ and period T (seconds),

$$
f=1 / T=\omega /(2 \pi) \text {, where }
$$

$\omega=$ the angular frequency in radians/s.

Average Value

For a periodic waveform (either voltage or current) with period T,

$$
X_{\mathrm{ave}}=(1 / T) \int_{0}^{T} x(t) d t
$$

The average value of a full-wave rectified sine wave is

$$
X_{\mathrm{ave}}=\left(2 X_{\max }\right) / \pi
$$

and half this for a half-wave rectification, where
$X_{\text {max }}=$ the peak amplitude of the waveform.

Effective or RMS Values

For a periodic waveform with period T, the rms or effective value is

$$
X_{\mathrm{rms}}=\left[(1 / T) \int_{0}^{T} x^{2}(t) d t\right]^{1 / 2}
$$

For a sinusoidal waveform and full-wave rectified sine wave,

$$
X_{\mathrm{rms}}=X_{\max } / \sqrt{2}
$$

For a half-wave rectified sine wave,

$$
X_{\mathrm{rms}}=X_{\max } / 2
$$

Sine-Cosine Relations

$$
\cos (\omega t)=\sin (\omega t+\pi / 2)=-\sin (\omega t-\pi / 2)
$$

$$
\sin (\omega t)=\cos (\omega t-\pi / 2)=-\cos (\omega t+\pi / 2)
$$

Phasor Transforms of Sinusoids

$P\left[V_{\text {max }} \cos (\omega t+\phi)\right]=V_{\text {rms }} \angle \phi=\boldsymbol{V}$
$P\left[I_{\text {max }} \cos (\omega t+\theta)\right]=I_{\mathrm{rms}} \angle \theta=\boldsymbol{I}$
For a circuit element, the impedance is defined as the ratio of phasor voltage to phasor current.

$$
Z=\frac{V}{I}
$$

For a Resistor,

$$
Z_{\mathrm{R}}=R
$$

For a Capacitor,

$$
Z_{\mathrm{C}}=\frac{1}{\mathrm{j} \omega C}=\mathrm{j} X_{\mathrm{C}}
$$

For an Inductor,

$$
Z_{\mathrm{L}}=\mathrm{j} \omega L=\mathrm{j} X_{\mathrm{L}} \text {, where }
$$

X_{C} and X_{L} are the capacitive and inductive reactances respectively defined as

$$
X_{C}=-\frac{1}{\omega C} \quad \text { and } \quad X_{L}=\omega L
$$

Impedances in series combine additively while those in parallel combine according to the reciprocal rule just as in the case of resistors.

Complex Power

Real power P (watts) is defined by

$$
\begin{aligned}
P & =(1 / 2) V_{\max } I_{\max } \cos \theta \\
& =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \theta
\end{aligned}
$$

where θ is the angle measured from \boldsymbol{V} to \boldsymbol{I}. If \boldsymbol{I} leads (lags) \boldsymbol{V}, then the power factor ($p . f$.),

$$
\text { p.f. }=\cos \theta
$$

is said to be a leading (lagging) $p . f$.
Reactive power Q (vars) is defined by

$$
\begin{aligned}
Q & =(1 / 2) V_{\max } I_{\max } \sin \theta \\
& =V_{\mathrm{rms}} I_{\mathrm{rms}} \sin \theta
\end{aligned}
$$

Complex power \boldsymbol{S} (volt-amperes) is defined by

$$
\boldsymbol{S}=\boldsymbol{V} \boldsymbol{I}^{*}=\mathrm{P}+\mathrm{j} Q
$$

where I^{*} is the complex conjugate of the phasor current.
For resistors, $\theta=0$, so the real power is

$$
P=V_{r m s} I_{r m s}=V_{r m s}^{2} / R=I_{r m s}^{2} R
$$

RESONANCE

The radian resonant frequency for both parallel and series resonance situations is

$$
\omega_{o}=\frac{1}{\sqrt{L C}}=2 \pi f_{o}(\mathrm{rad} / \mathrm{s})
$$

Series Resonance

$$
\omega_{o} L=\frac{1}{\omega_{o} C}
$$

$$
Z=R \text { at resonance. }
$$

$$
Q=\frac{\omega_{o} L}{R}=\frac{1}{\omega_{o} C R}
$$

$$
B W=\omega_{0} / Q(\mathrm{rad} / \mathrm{s})
$$

Parallel Resonance

$\omega_{o} L=\frac{1}{\omega_{o} C} \quad$ and
$Z=R$ at resonance.
$Q=\omega_{o} R C=\frac{R}{\omega_{o} L}$
$B W=\omega_{0} / Q(\mathrm{rad} / \mathrm{s})$

TRANSFORMERS

Turns Ratio

$$
\begin{aligned}
& a=N_{1} / N_{2} \\
& a=\left|\frac{\boldsymbol{V}_{\mathrm{p}}}{\boldsymbol{V}_{\mathrm{s}}}\right|=\left|\frac{\boldsymbol{I}_{\mathrm{s}}}{\boldsymbol{I}_{\mathrm{p}}}\right|
\end{aligned}
$$

The impedance seen at the input is

$$
Z_{\mathrm{P}}=a^{2} Z_{\mathrm{S}}
$$

ALGEBRA OF COMPLEX NUMBERS

Complex numbers may be designated in rectangular form or polar form. In rectangular form, a complex number is written in terms of its real and imaginary components.

$$
z=a+\mathrm{j} b, \text { where }
$$

$a=$ the real component,
$b=$ the imaginary component, and
$\mathrm{j}=\sqrt{-1}$
In polar form
$z=c \angle \theta$, where
$c=\sqrt{a^{2}+b^{2}}$,
$\theta=\tan ^{-1}(b / a)$,
$a=c \cos \theta$, and
$b=c \sin \theta$.
Complex numbers are added and subtracted in rectangular form. If

$$
\begin{aligned}
& z_{1}=a_{1}+\mathrm{j} b_{1}=c_{1}\left(\cos \theta_{1}+\mathrm{j} \sin \theta_{1}\right) \\
&=c_{1} \angle \theta_{1} \text { and } \\
& z_{2}=a_{2}+\mathrm{j} b_{2} \quad=c_{2}\left(\cos \theta_{2}+\mathrm{j} \sin \theta_{2}\right) \\
&=c_{2} \angle \theta_{2}, \text { then } \\
& z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+\mathrm{j}\left(b_{1}+b_{2}\right) \text { and } \\
& z_{1}-z_{2}=\left(a_{1}-a_{2}\right)+\mathrm{j}\left(b_{1}-b_{2}\right)
\end{aligned}
$$

While complex numbers can be multiplied or divided in rectangular form, it is more convenient to perform these operations in polar form.

$$
\begin{array}{ll}
z_{1} \times z_{2} & =\left(c_{1} \times c_{2}\right) \angle \theta_{1}+\theta_{2} \\
z_{1} / z_{2} & =\left(c_{1} / c_{2}\right) \angle \theta_{1}-\theta_{2}
\end{array}
$$

The complex conjugate of a complex number $z_{1}=\left(a_{1}+\mathrm{j} b_{1}\right)$ is defined as $z_{1}{ }^{*}=\left(a_{1}-\mathrm{j} b_{1}\right)$. The product of a complex number and its complex conjugate is $z_{1} z_{1} *=a_{1}^{2}+b_{1}^{2}$.

COMPUTERS, MEASUREMENT, AND CONTROLS

COMPUTER KNOWLEDGE

Examinees are expected to possess a level of computer expertise required to perform in a typical undergraduate environment. Thus only generic problems that do not require a knowledge of a specific language or computer type will be required. Examinees are expected to be familiar with flow charts, pseudo code, and spread sheets (Lotus, Quattro-Pro, Excel, etc.).

INSTRUMENTATION

General Considerations

In making any measurement, the response of the total measurement system, including the behavior of the sensors and any signal processors, is best addressed using the methods of control systems. Response time and the effect of the sensor on the parameter being measured may affect accuracy of a measurement. Moreover, many transducers exhibit some sensitivity to phenomena other than the primary parameter being measured. All of these considerations affect accuracy, stability, noise sensitivity, and precision of any measurement. In the case of digital measurement systems, the limit of resolution corresponds to one bit.

Examples of Types of Sensors

Fluid-based sensors such as manometers, orifice and venturi flow meters, and pitot tubes are discussed in the FLUID MECHANICS section.

Resistance-based sensors include resistance temperature detectors (RTDs), which are metal resistors, and thermistors, which are semiconductors. Both have electrical resistivities that are temperature dependent.
Electrical-resistance strain gages are metallic or semiconducting foils whose resistance changes with dimensional change (strain). They are widely used in load cells. The gage is attached to the surface whose strain is to be measured. The gage factor (G.F.) of these devices is defined by

$$
\text { G.F. }=\frac{\Delta R / R}{\Delta L / L}=\frac{\Delta R / R}{\varepsilon} \text {, where }
$$

$R=$ electrical resistance,
$L=$ the length of the gage section, and
$\varepsilon=$ the normal strain sensed by the gage.
Strain gages sense normal strain along their principal axis. They do not respond to shear strain. Therefore, multiple gages must be used along with Mohr's circle techniques to determine the complete plane strain state.
Resistance-based sensors are generally used in a bridge circuit that detects small changes in resistance. The output of a bridge circuit with only one variable resistor (quarter bridge configuration) is given by

$$
V_{\text {out }}=V_{\text {input }} \times[\Delta R /(4 R)]
$$

Half-bridge and full-bridge configurations use two or four variable resistors, respectively. A full-bridge strain gage circuit give a voltage output of

$$
V_{\text {out }}=V_{\text {input }} \times \text { G.F. } \times\left(\varepsilon_{1}-\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4}\right) / 4
$$

Half- or full-strain gage bridge configurations can be developed that are sensitive to only some types of loading (axial, bending, shear) while being insensitive to others.
Piezoelectric sensors produce a voltage in response to a mechanical load. These transducers are widely used as force or pressure transducers. With the addition of an inertial mass, they are used as accelerometers.
Thermocouples are junctions of dissimilar metals which produce a voltage whose magnitude is temperature dependent.
Capacitance-based transducers are used as position sensors. The capacitance of two flat plates depends on their separation or on the area of overlap.

Inductance-based transducers or differential transformers also function as displacement transducers. The inductive coupling between a primary and secondary coil depends on the position of a soft magnetic core. This is the basis for the Linear Variable Differential Transformer (LVDT).

MEASUREMENT UNCERTAINTY

Suppose that a calculated result R depends on measurements whose values are $x_{1} \pm w_{1}, x_{2} \pm w_{2}, x_{3} \pm w_{3}$, etc., where $R=$ $f\left(x_{1}, x_{2}, x_{3}, \ldots x_{\mathrm{n}}\right), x_{\mathrm{i}}$ is the measured value, and w_{i} is the uncertainty in that value. The uncertainty in R, w_{R}, can be estimated using the Kline-McClintock equation:

$$
w_{R}=\sqrt{\left(w_{1} \frac{\partial f}{\partial x_{1}}\right)^{2}+\left(w_{2} \frac{\partial f}{\partial x_{2}}\right)^{2}+\ldots+\left(w_{n} \frac{\partial f}{\partial x_{n}}\right)^{2}}
$$

CONTROL SYSTEMS

The linear time-invariant transfer function model represented by the block diagram

can be expressed as the ratio of two polynomials in the form

$$
\frac{X(s)}{Y(s)}=G(s)=\frac{N(s)}{D(s)}=K \frac{\prod_{m=1}^{M}\left(s-z_{m}\right)}{\prod_{n=1}^{N}\left(s-p_{n}\right)}
$$

where the M zeros, z_{m}, and the N poles, p_{n}, are the roots of the numerator polynomial, $N(s)$, and the denominator polynomial, $D(s)$, respectively.

One classical negative feedback control system model block diagram is

where $G_{R}(s)$ describes an input processor, $G_{C}(s)$ a controller or compensator, $G_{1}(s)$ and $G_{2}(s)$ represent a partitioned plant model, and $H(s)$ a feedback function. $C(s)$ represents the controlled variable, $R(s)$ represents the setpoint, and $L(s)$ represents a load disturbance. $C(s)$ is related to $R(s)$ and $L(s)$ by

$$
\begin{aligned}
C(s)= & \frac{G_{c}(s) G_{1}(s) G_{2}(s) G_{R}(s)}{1+G_{c}(s) G_{1}(s) G_{2}(s) H(s)} R(s) \\
& +\frac{G_{2}(s)}{1+G_{c}(s) G_{1}(s) G_{2}(s) H(s)} L(s)
\end{aligned}
$$

$G_{C}(s) G_{1}(s) G_{2}(s) H(s)$ is the open-loop transfer function. The characteristic equation is

$$
G_{C}(s) G_{1}(s) G_{2}(s) H(s)+1=0
$$

System performance studies normally include:

1. Steady-state analysis using constant inputs is based on the Final Value Theorem. If all poles of a $G(s)$ function have negative real parts, then

$$
\text { Steady State Gain }=\lim _{s \rightarrow 0} G(s)
$$

For the unity feedback control system model

with the open-loop transfer function defined by

$$
G(s)=\frac{K_{B}}{s^{T}} \times \frac{\prod_{m=1}^{M}\left(1+s / \omega_{m}\right)}{\prod_{n=1}^{N}\left(1+s / \omega_{n}\right)}
$$

The following steady-state error analysis table can be constructed where T denotes the type of system; i.e., type 0 , type 1 , etc.

Steady-State Error $\boldsymbol{e}_{\boldsymbol{s s}}(\boldsymbol{t})$			
Input Type	$T=0$	$T=1$	$T=2$
Unit Step	$1 /\left(K_{B}+1\right)$	0	0
Ramp	∞	$1 / K_{B}$	0
Acceleration	∞	∞	$1 / K_{B}$

2. Frequency response evaluations to determine dynamic performance and stability. For example, relative stability can be quantified in terms of
a. Gain margin (GM) which is the additional gain required to produce instability in the unity gain feedback control system. If at $\omega=\omega_{180}$,

$$
\begin{aligned}
& \angle G\left(j \omega_{180}\right)=180^{\circ} ; \text { then } \\
& \text { GM }=-20 \log _{10}\left(\left|\mathrm{G}\left(\mathrm{j} \omega_{180}\right)\right|\right)
\end{aligned}
$$

b. Phase margin (PM) which is the additional phase required to produce instability. Thus,

$$
\mathrm{PM}=180^{\circ}+\angle G\left(\mathrm{j} \omega_{0 \mathrm{~dB}}\right)
$$

where $\omega_{0 \mathrm{~dB}}$ is the ω that satisfies $|G(\mathrm{j} \omega)|=1$.
3. Transient responses are obtained by using Laplace Transforms or computer solutions with numerical integration.
Common Compensator/Controller forms are
PID Controller $G_{C}(s)=K\left(1+\frac{1}{T_{I} s}+T_{D} s\right)$
Lag or Lead Compensator $G_{C}(s)=K\left(\frac{1+s T_{1}}{1+s T_{2}}\right)$
depending on the ratio of T_{1} / T_{2}.

Routh Test

For the characteristic equation

$$
a_{0} s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\ldots+a_{n}=0
$$

the coefficients are arranged into the first two rows of an array. Additional rows are computed. The array and coefficient computations are defined by:
where

a_{0}	a_{2}	a_{4}	\ldots	\ldots	\ldots
a_{1}	a_{3}	a_{5}	\ldots	\ldots	\ldots
b_{1}	b_{2}	b_{3}	\ldots	\ldots	\ldots
c_{1}	c_{2}	c_{3}	\ldots	\ldots	\ldots

$$
\begin{array}{ll}
b_{1}=\frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} & c_{1}=\frac{a_{3} b_{1}-a_{1} b_{2}}{b_{1}} \\
b_{2}=\frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} & c_{2}=\frac{a_{5} b_{1}-a_{1} b_{3}}{b_{1}}
\end{array}
$$

The necessary and sufficient conditions for all the roots of the equation to have negative real parts is that all the elements in the first column be of the same sign and nonzero.

Second-Order Control-System Models

One standard second-order control-system model is

$$
\frac{C(s)}{R(s)}=\frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$K=$ steady state gain,
$\zeta=$ the damping ratio,
$\omega_{n}=$ the undamped natural $(\zeta=0)$ frequency,
$\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$, the damped natural frequency,
and
$\omega_{p}=\omega_{n} \sqrt{1-2 \zeta^{2}}$, the damped resonant frequency.
If the damping ratio ζ is less than unity, the system is said to be underdamped; if ζ is equal to unity, it is said to be critically damped; and if ζ is greater than unity, the system is said to be overdamped.
For a unit step input to a normalized underdamped secondorder control system, the time required to reach a peak value t_{p} and the value of that peak C_{p} are given by

$$
\begin{aligned}
& t_{p}=\pi /\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) \\
& C_{p}=1+e^{-\pi \zeta / \sqrt{1-\zeta^{2}}}
\end{aligned}
$$

For an underdamped second-order system, the logarithmic decrement is

$$
\delta=\frac{1}{m} \ln \left(\frac{x_{k}}{x_{k+m}}\right)=\frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}}
$$

where x_{k} and x_{k+m} are the amplitudes of oscillation at cycles k and $k+m$, respectively. The period of oscillation τ is related to ω_{d} by

$$
\omega_{d} \tau=2 \pi
$$

State-Variable Control-System Models

One common state-variable model for dynamic systems has the form

$$
\begin{array}{rlr}
\dot{\mathbf{x}}(t) & =\mathbf{A x}(t)+\mathbf{B u}(t) & \text { (state equation) } \\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)+\mathbf{D u}(t) & \text { (output equation) }
\end{array}
$$

where
$\mathbf{x}(t)=N$ by 1 state vector (N state variables),
$\mathbf{u}(t)=R$ by 1 input vector (R inputs),
$\mathbf{y}(t)=M$ by 1 output vector (M outputs),
A = system matrix,
B $=$ input distribution matrix,
C = output matrix, and
D = feed-through matrix.
The orders of the matrices are defined via variable definitions.
State-variable models automatically handle multiple inputs and multiple outputs. Furthermore, state-variable models can be formulated for open-loop system components or the complete closed-loop system.
The Laplace transform of the time-invariant state equation is

$$
s \mathbf{X}(s)-\mathbf{x}(0)=\mathbf{A} \mathbf{X}(s)+\mathbf{B U}(s)
$$

from which

$$
\mathbf{X}(s)=\boldsymbol{\Phi}(s) \mathbf{x}(0)+\boldsymbol{\Phi}(s) \mathbf{B U}(s)
$$

where

$$
\boldsymbol{\Phi}(s)=[s \mathbf{I}-\mathbf{A}]^{-1}
$$

is the state transition matrix. The state-transition matrix

$$
\boldsymbol{\Phi}(t)=L^{-1}\{\boldsymbol{\Phi}(s)\}
$$

(also defined as $e^{\boldsymbol{A} t}$) can be used to write

$$
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \mathbf{x}(0)+\int_{0}^{t} \Phi(t-\tau) \mathbf{B u}(\tau) d \tau
$$

The output can be obtained with the output equation; e.g., the Laplace transform output is

$$
\mathbf{Y}(s)=\{\mathbf{C} \boldsymbol{\Phi}(s) \mathbf{B}+\mathbf{D}\} \mathbf{U}(s)+\mathbf{C} \boldsymbol{\Phi}(s) \mathbf{x}(0)
$$

The latter term represents the output(s) due to initial conditions whereas the former term represents the output(s) due to the $\mathbf{U}(s)$ inputs and gives rise to transfer function definitions.

ENGINEERING ECONOMICS

Factor Name	Converts	Symbol	Formula
Single Payment Compound Amount	to F given P	$(F / P, i \%, n)$	$(1+i)^{n}$
Single Payment Present Worth	to P given F	$(P / F, i \%, n)$	$(1+i)^{-n}$
Uniform Series Sinking Fund	to A given F	$(A / F, i \%, n)$	$\frac{i}{(1+i)^{n}-1}$
Capital Recovery	to A given P	$(A / P, i \%, n)$	$\frac{i(1+i)^{n}}{(1+i)^{n}-1}$
Uniform Series Compound Amount	to F given A	$(F / A, i \%, n)$	$\frac{(1+i)^{n}-1}{i}$
Uniform Series Present Worth	to P given A	(P/A, $\%$ \%, n)	$\frac{(1+i)^{n}-1}{i(1+i)^{n}}$
Uniform Gradient ** Present Worth	to P given G	$(P / G, i \%, n)$	$\frac{(1+i)^{n}-1}{i^{2}(1+i)^{n}}-\frac{n}{i(1+i)^{n}}$
Uniform Gradient \dagger Future Worth	to F given G	$(F / G, i \%, n)$	$\frac{(1+i)^{n}-1}{i^{2}}-\frac{n}{i}$
Uniform Gradient \ddagger Uniform Series	to A given G	(A/G, $i \%, n$)	$\frac{1}{i}-\frac{n}{(1+i)^{n}-1}$

NOMENCLATURE AND DEFINITIONS

A.......... Uniform amount per interest period
B.......... Benefit
$B V$....... Book Value
C.......... Cost
$d \ldots$. Combined interest rate per interest period
$D_{j} \ldots \ldots . .$. Depreciation in year j
F.......... Future worth, value, or amount
f........... General inflation rate per interest period
G Uniform gradient amount per interest period
i........... Interest rate per interest period
i_{e}. Annual effective interest rate
m......... Number of compounding periods per year
$n \ldots$. Number of compounding periods; or the expected life of an asset
P.......... Present worth, value, or amount
r........... Nominal annual interest rate
$S_{n} \ldots \ldots .$. Expected salvage value in year n

Subscripts

j.
........... at time j
n.......... at time n
** $P / G=(F / G) /(F / P)=(P / A) \times(A / G)$
$\dagger \quad F / G=(F / A-n) / i=(F / A) \times(A / G)$
$\ddagger \ldots \ldots \ldots . A / G=[1-n(A / F)] / i$

NON-ANNUAL COMPOUNDING

$$
i_{e}=\left(1+\frac{r}{m}\right)^{m}-1
$$

Discount Factors for Continuous Compounding

(n is the number of years)
$(F / P, r \%, n)=e^{r n}$
$(P / F, r \%, n)=\mathrm{e}^{-r n}$
$(A / F, r \%, n)=\frac{e^{r}-1}{e^{r n}-1}$
$(F / A, r \%, n)=\frac{e^{r n}-1}{e^{r}-1}$
$(A / P, r \%, n)=\frac{e^{r}-1}{1-e^{-r n}}$
$(P / A, r \%, n)=\frac{1-e^{-r n}}{e^{r}-1}$

BOOK VALUE

$B V=$ initial cost $-\Sigma D_{j}$

DEPRECIATION

Straight Line

$$
D_{j}=\frac{C-S_{n}}{n}
$$

Accelerated Cost Recovery System (ACRS)

$$
D_{j}=(\text { factor }) C
$$

A table of modified factors is provided below.

CAPITALIZED COSTS

Capitalized costs are present worth values using an assumed perpetual period of time.

$$
\text { Capitalized Costs }=P=\frac{A}{i}
$$

BONDS

Bond Value equals the present worth of the payments the purchaser (or holder of the bond) receives during the life of the bond at some interest rate i.
Bond Yield equals the computed interest rate of the bond value when compared with the bond cost.

RATE-OF-RETURN

The minimum acceptable rate-of-return is that interest rate that one is willing to accept, or the rate one desires to earn on investments. The rate-of-return on an investment is the interest rate that makes the benefits and costs equal.

BREAK-EVEN ANALYSIS

By altering the value of any one of the variables in a situation, holding all of the other values constant, it is possible to find a value for that variable that makes the two alternatives equally economical. This value is the break-even point.
Break-even analysis is used to describe the percentage of capacity of operation for a manufacturing plant at which income will just cover expenses.
The payback period is the period of time required for the profit or other benefits of an investment to equal the cost of the investment.

INFLATION

To account for inflation, the dollars are deflated by the general inflation rate per interest period f, and then they are shifted over the time scale using the interest rate per interest period i. Use a combined interest rate per interest period d for computing present worth values P and Net P. The formula for d is

$$
d=i+f+(i \times f)
$$

BENEFIT-COST ANALYSIS

In a benefit-cost analysis, the benefits B of a project should exceed the estimated costs C.

$$
B-C \geq 0, \text { or } \quad B / C \geq 1
$$

MODIFIED ACRS FACTORS				
	$\mathbf{y y y y}$			
	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{1 0}$
Year	Recovery Rate (Percent)			
1	33.3	20.0	14.3	10.0
2	44.5	32.0	24.5	18.0
3	14.8	19.2	17.5	14.4
4	7.4	11.5	12.5	11.5
$\mathbf{5}$		$\mathbf{1 1 . 5}$	$\mathbf{8 . 9}$	$\mathbf{9 . 2}$
6		5.8	8.9	7.4
7			8.9	6.6
8			4.5	6.6
9				6.5
$\mathbf{1 0}$				$\mathbf{6 . 5}$
11				3.3

Factor Table - $\boldsymbol{i}=\mathbf{0 . 5 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	$\boldsymbol{P} / \boldsymbol{A}$	$\boldsymbol{P} / \boldsymbol{G}$	$\boldsymbol{F} / \mathbf{P}$	$\boldsymbol{F} / \boldsymbol{A}$	A/P	A/F	A/G
1	0.9950	0.9950	0.0000	1.0050	1.0000	1.0050	1.0000	0.0000
2	0.9901	1.9851	0.9901	1.0100	2.0050	0.5038	0.4988	0.4988
3	0.9851	2.9702	2.9604	1.0151	3.0150	0.3367	0.3317	0.9967
4	0.9802	3.9505	5.9011	1.0202	4.0301	0.2531	0.2481	1.4938
5	0.9754	4.9259	9.8026	1.0253	5.0503	0.2030	0.1980	1.9900
6	0.9705	5.8964	14.6552	1.0304	6.0755	0.1696	0.1646	2.4855
7	0.9657	6.8621	20.4493	1.0355	7.1059	0.1457	0.1407	2.9801
8	0.9609	7.8230	27.1755	1.0407	8.1414	0.1278	0.1228	3.4738
9	0.9561	8.7791	34.8244	1.0459	9.1821	0.1139	0.1089	3.9668
10	0.9513	9.7304	43.3865	1.0511	10.2280	0.1028	0.0978	4.4589
11	0.9466	10.6770	52.8526	1.0564	11.2792	0.0937	0.0887	4.9501
12	0.9419	11.6189	63.2136	1.0617	12.3356	0.0861	0.0811	5.4406
13	0.9372	12.5562	74.4602	1.0670	13.3972	0.0796	0.0746	5.9302
14	0.9326	13.4887	86.5835	1.0723	14.4642	0.0741	0.0691	6.4190
15	0.9279	14.4166	99.5743	1.0777	15.5365	0.0694	0.0644	6.9069
16	0.9233	15.3399	113.4238	1.0831	16.6142	0.0652	0.0602	7.3940
17	0.9187	16.2586	128.1231	1.0885	17.6973	0.0615	0.0565	7.8803
18	0.9141	17.1728	143.6634	1.0939	18.7858	0.0582	0.0532	8.3658
19	0.9096	18.0824	160.0360	1.0994	19.8797	0.0553	0.0503	8.8504
20	0.9051	18.9874	177.2322	1.1049	20.9791	0.0527	0.0477	9.3342
21	0.9006	19.8880	195.2434	1.1104	22.0840	0.0503	0.0453	9.8172
22	0.8961	20.7841	214.0611	1.1160	23.1944	0.0481	0.0431	10.2993
23	0.8916	21.6757	233.6768	1.1216	24.3104	0.0461	0.0411	10.7806
24	0.8872	22.5629	254.0820	1.1272	25.4320	0.0443	0.0393	11.2611
25	0.8828	23.4456	275.2686	1.1328	26.5591	0.0427	0.0377	11.7407
30	0.8610	27.7941	392.6324	1.1614	32.2800	0.0360	0.0310	14.1265
40	0.8191	36.1722	681.3347	1.2208	44.1588	0.0276	0.0226	18.8359
50	0.7793	44.1428	1,035.6966	1.2832	56.6452	0.0227	0.0177	23.4624
60	0.7414	51.7256	1,448.6458	1.3489	69.7700	0.0193	0.0143	28.0064
100	0.6073	78.5426	3,562.7934	1.6467	129.3337	0.0127	0.0077	45.3613

Factor Table - $\boldsymbol{i}=\mathbf{1 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	P / A	P / G	$\boldsymbol{F} / \mathbf{P}$	$\boldsymbol{F} / \boldsymbol{A}$	A/P	A/F	A/G
1	0.9901	0.9901	0.0000	1.0100	1.0000	1.0100	1.0000	0.0000
2	0.9803	1.9704	0.9803	1.0201	2.0100	0.5075	0.4975	0.4975
3	0.9706	2.9410	2.9215	1.0303	3.0301	0.3400	0.3300	0.9934
4	0.9610	3.9020	5.8044	1.0406	4.0604	0.2563	0.2463	1.4876
5	0.9515	4.8534	9.6103	1.0510	5.1010	0.2060	0.1960	1.9801
6	0.9420	5.7955	14.3205	1.0615	6.1520	0.1725	0.1625	2.4710
7	0.9327	6.7282	19.9168	1.0721	7.2135	0.1486	0.1386	2.9602
8	0.9235	7.6517	26.3812	1.0829	8.2857	0.1307	0.1207	3.4478
9	0.9143	8.5650	33.6959	1.0937	9.3685	0.1167	0.1067	3.9337
10	0.9053	9.4713	41.8435	1.1046	10.4622	0.1056	0.0956	4.4179
11	0.8963	10.3676	50.8067	1.1157	11.5668	0.0965	0.0865	4.9005
12	0.8874	11.2551	60.5687	1.1268	12.6825	0.0888	0.0788	5.3815
13	0.8787	12.1337	71.1126	1.1381	13.8093	0.0824	0.0724	5.8607
14	0.8700	13.0037	82.4221	1.1495	14.9474	0.0769	0.0669	6.3384
15	0.8613	13.8651	94.4810	1.1610	16.0969	0.0721	0.0621	6.8143
16	0.8528	14.7179	107.2734	1.1726	17.2579	0.0679	0.0579	7.2886
17	0.8444	15.5623	120.7834	1.1843	18.4304	0.0643	0.0543	7.7613
18	0.8360	16.3983	134.9957	1.1961	19.6147	0.0610	0.0510	8.2323
19	0.8277	17.2260	149.8950	1.2081	20.8109	0.0581	0.0481	8.7017
20	0.8195	18.0456	165.4664	1.2202	22.0190	0.0554	0.0454	9.1694
21	0.8114	18.8570	181.6950	1.2324	23.2392	0.0530	0.0430	9.6354
22	0.8034	19.6604	198.5663	1.2447	24.4716	0.0509	0.0409	10.0998
23	0.7954	20.4558	216.0660	1.2572	25.7163	0.0489	0.0389	10.5626
24	0.7876	21.2434	234.1800	1.2697	26.9735	0.0471	0.0371	11.0237
25	0.7798	22.0232	252.8945	1.2824	28.2432	0.0454	0.0354	11.4831
30	0.7419	25.8077	355.0021	1.3478	34.7849	0.0387	0.0277	13.7557
40	0.6717	32.8347	596.8561	1.4889	48.8864	0.0305	0.0205	18.1776
50	0.6080	39.1961	879.4176	1.6446	64.4632	0.0255	0.0155	22.4363
60	0.5504	44.9550	1,192.8061	1.8167	81.6697	0.0222	0.0122	26.5333
100	0.3697	63.0289	2,605.7758	2.7048	170.4814	0.0159	0.0059	41.3426

Factor Table - $\boldsymbol{i}=\mathbf{1 . 5 0 \%}$

\boldsymbol{n}	P / F	P / A	P / G	F / P	F / A	A/P	A/F	A/G
1	0.9852	0.9852	0.0000	1.0150	1.0000	1.0150	1.0000	0.0000
2	0.9707	1.9559	0.9707	1.0302	2.0150	0.5113	0.4963	0.4963
3	0.9563	2.9122	2.8833	1.0457	3.0452	0.3434	0.3284	0.9901
4	0.9422	3.8544	5.7098	1.0614	4.0909	0.2594	0.2444	1.4814
5	0.9283	4.7826	9.4229	1.0773	5.1523	0.2091	0.1941	1.9702
6	0.9145	5.6972	13.9956	1.0934	6.2296	0.1755	0.1605	2.4566
7	0.9010	6.5982	19.4018	1.1098	7.3230	0.1516	0.1366	2.9405
8	0.8877	7.4859	26.6157	1.1265	8.4328	0.1336	0.1186	3.4219
9	0.8746	8.3605	32.6125	1.1434	9.5593	0.1196	0.1046	3.9008
10	0.8617	9.2222	40.3675	1.1605	10.7027	0.1084	0.0934	4.3772
11	0.8489	10.0711	48.8568	1.1779	11.8633	0.0993	0.0843	4.8512
12	0.8364	10.9075	58.0571	1.1956	13.0412	0.0917	0.0767	5.3227
13	0.8240	11.7315	67.9454	1.2136	14.2368	0.0852	0.0702	5.7917
14	0.8118	12.5434	78.4994	1.2318	15.4504	0.0797	0.0647	6.2582
15	0.7999	13.3432	89.6974	1.2502	16.6821	0.0749	0.0599	6.7223
16	0.7880	14.1313	101.5178	1.2690	17.9324	0.0708	0.0558	7.1839
17	0.7764	14.9076	113.9400	1.2880	19.2014	0.0671	0.0521	7.6431
18	0.7649	15.6726	126.9435	1.3073	20.4894	0.0638	0.0488	8.0997
19	0.7536	16.4262	140.5084	1.3270	21.7967	0.0609	0.0459	8.5539
20	0.7425	17.1686	154.6154	1.3469	23.1237	0.0582	0.0432	9.0057
21	0.7315	17.9001	169.2453	1.3671	24.4705	0.0559	0.0409	9.4550
22	0.7207	18.6208	184.3798	1.3876	25.8376	0.0537	0.0387	9.9018
23	0.7100	19.3309	200.0006	1.4084	27.2251	0.0517	0.0367	10.3462
24	0.6995	20.0304	216.0901	1.4295	28.6335	0.0499	0.0349	10.7881
25	0.6892	20.7196	232.6310	1.4509	30.0630	0.0483	0.0333	11.2276
30	0.6398	24.0158	321.5310	1.5631	37.5387	0.0416	0.0266	13.3883
40	0.5513	29.9158	524.3568	1.8140	54.2679	0.0334	0.0184	17.5277
50	0.4750	34.9997	749.9636	2.1052	73.6828	0.0286	0.0136	21.4277
60	0.4093	39.3803	988.1674	2.4432	96.2147	0.0254	0.0104	25.0930
100	0.2256	51.6247	1,937.4506	4.4320	228.8030	0.0194	0.0044	37.5295

Factor Table $\boldsymbol{- i}=\mathbf{2 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	$\boldsymbol{P} / \boldsymbol{A}$	P / G	$\boldsymbol{F} / \mathbf{P}$	$\boldsymbol{F} / \boldsymbol{A}$	A/P	A/F	A/G
1	0.9804	0.9804	0.0000	1.0200	1.0000	1.0200	1.0000	0.0000
2	0.9612	1.9416	0.9612	1.0404	2.0200	0.5150	0.4950	0.4950
3	0.9423	2.8839	2.8458	1.0612	3.0604	0.3468	0.3268	0.9868
4	0.9238	3.8077	5.6173	1.0824	4.1216	0.2626	0.2426	1.4752
5	0.9057	4.7135	9.2403	1.1041	5.2040	0.2122	0.1922	1.9604
6	0.8880	5.6014	13.6801	1.1262	6.3081	0.1785	0.1585	2.4423
7	0.8706	6.4720	18.9035	1.1487	7.4343	0.1545	0.1345	2.9208
8	0.8535	7.3255	24.8779	1.1717	8.5830	0.1365	0.1165	3.3961
9	0.8368	8.1622	31.5720	1.1951	9.7546	0.1225	0.1025	3.8681
10	0.8203	8.9826	38.9551	1.2190	10.9497	0.1113	0.0913	4.3367
11	0.8043	9.7868	46.9977	1.2434	12.1687	0.1022	0.0822	4.8021
12	0.7885	10.5753	55.6712	1.2682	13.4121	0.0946	0.0746	5.2642
13	0.7730	11.3484	64.9475	1.2936	14.6803	0.0881	0.0681	5.7231
14	0.7579	12.1062	74.7999	1.3195	15.9739	0.0826	0.0626	6.1786
15	0.7430	12.8493	85.2021	1.3459	17.2934	0.0778	0.0578	6.6309
16	0.7284	13.5777	96.1288	1.3728	18.6393	0.0737	0.0537	7.0799
17	0.7142	14.2919	107.5554	1.4002	20.0121	0.0700	0.0500	7.5256
18	0.7002	14.9920	119.4581	1.4282	21.4123	0.0667	0.0467	7.9681
19	0.6864	15.6785	131.8139	1.4568	22.8406	0.0638	0.0438	8.4073
20	0.6730	16.3514	144.6003	1.4859	24.2974	0.0612	0.0412	8.8433
21	0.6598	17.0112	157.7959	1.5157	25.7833	0.0588	0.0388	9.2760
22	0.6468	17.6580	171.3795	1.5460	27.2990	0.0566	0.0366	9.7055
23	0.6342	18.2922	185.3309	1.5769	28.8450	0.0547	0.0347	10.1317
24	0.6217	18.9139	199.6305	1.6084	30.4219	0.0529	0.0329	10.5547
25	0.6095	19.5235	214.2592	1.6406	32.0303	0.0512	0.0312	10.9745
30	0.5521	22.3965	291.7164	1.8114	40.5681	0.0446	0.0246	13.0251
40	0.4529	27.3555	461.9931	2.2080	60.4020	0.0366	0.0166	16.8885
50	0.3715	31.4236	642.3606	2.6916	84.5794	0.0318	0.0118	20.4420
60	0.3048	34.7609	823.6975	3.2810	114.0515	0.0288	0.0088	23.6961
100	0.1380	43.0984	1,464.7527	7.2446	312.2323	0.0232	0.0032	33.9863

Factor Table - $\boldsymbol{i}=\mathbf{4 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	P / A	P / G	$\boldsymbol{F} / \mathbf{P}$	$\boldsymbol{F} / \boldsymbol{A}$	\boldsymbol{A} / P	A/F	A/G
1	0.9615	0.9615	0.0000	1.0400	1.0000	1.0400	1.0000	0.0000
2	0.9246	1.8861	0.9246	1.0816	2.0400	0.5302	0.4902	0.4902
3	0.8890	2.7751	2.7025	1.1249	3.1216	0.3603	0.3203	0.9739
4	0.8548	3.6299	5.2670	1.1699	4.2465	0.2755	0.2355	1.4510
5	0.8219	4.4518	8.5547	1.2167	5.4163	0.2246	0.1846	1.9216
6	0.7903	5.2421	12.5062	1.2653	6.6330	0.1908	0.1508	2.3857
7	0.7599	6.0021	17.0657	1.3159	7.8983	0.1666	0.1266	2.8433
8	0.7307	6.7327	22.1806	1.3686	9.2142	0.1485	0.1085	3.2944
9	0.7026	7.4353	27.8013	1.4233	10.5828	0.1345	0.0945	3.7391
10	0.6756	8.1109	33.8814	1.4802	12.0061	0.1233	0.0833	4.1773
11	0.6496	8.7605	40.3772	1.5395	13.4864	0.1141	0.0741	4.6090
12	0.6246	9.3851	47.2477	1.6010	15.0258	0.1066	0.0666	5.0343
13	0.6006	9.9856	54.4546	1.6651	16.6268	0.1001	0.0601	5.4533
14	0.5775	10.5631	61.9618	1.7317	18.2919	0.0947	0.0547	5.8659
15	0.5553	11.1184	69.7355	1.8009	20.0236	0.0899	0.0499	6.2721
16	0.5339	11.6523	77.7441	1.8730	21.8245	0.0858	0.0458	6.6720
17	0.5134	12.1657	85.9581	1.9479	23.6975	0.0822	0.0422	7.0656
18	0.4936	12.6593	94.3498	2.0258	25.6454	0.0790	0.0390	7.4530
19	0.4746	13.1339	102.8933	2.1068	27.6712	0.0761	0.0361	7.8342
20	0.4564	13.5903	111.5647	2.1911	29.7781	0.0736	0.0336	8.2091
21	0.4388	14.0292	120.3414	2.2788	31.9692	0.0713	0.0313	8.5779
22	0.4220	14.4511	129.2024	2.3699	34.2480	0.0692	0.0292	8.9407
23	0.4057	14.8568	138.1284	2.4647	36.6179	0.0673	0.0273	9.2973
24	0.3901	15.2470	147.1012	2.5633	39.0826	0.0656	0.0256	9.6479
25	0.3751	15.6221	156.1040	2.6658	41.6459	0.0640	0.0240	9.9925
30	0.3083	17.2920	201.0618	3.2434	56.0849	0.0578	0.0178	11.6274
40	0.2083	19.7928	286.5303	4.8010	95.0255	0.0505	0.0105	14.4765
50	0.1407	21.4822	361.1638	7.1067	152.6671	0.0466	0.0066	16.8122
60	0.0951	22.6235	422.9966	10.5196	237.9907	0.0442	0.0042	18.6972
100	0.0198	24.5050	563.1249	50.5049	1,237.6237	0.0408	0.0008	22.9800

Factor Table - $\boldsymbol{i}=\mathbf{6 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	P / A	P / G	$\boldsymbol{F} / \boldsymbol{P}$	$\boldsymbol{F} / \boldsymbol{A}$	$\boldsymbol{A} / \mathbf{P}$	A/F	A/G
1	0.9434	0.9434	0.0000	1.0600	1.0000	1.0600	1.0000	0.0000
2	0.8900	1.8334	0.8900	1.1236	2.0600	0.5454	0.4854	0.4854
3	0.8396	2.6730	2.5692	1.1910	3.1836	0.3741	0.3141	0.9612
4	0.7921	3.4651	4.9455	1.2625	4.3746	0.2886	0.2286	1.4272
5	0.7473	4.2124	7.9345	1.3382	5.6371	0.2374	0.1774	1.8836
6	0.7050	4.9173	11.4594	1.4185	6.9753	0.2034	0.1434	2.3304
7	0.6651	5.5824	15.4497	1.5036	8.3938	0.1791	0.1191	2.7676
8	0.6274	6.2098	19.8416	1.5938	9.8975	0.1610	0.1010	3.1952
9	0.5919	6.8017	24.5768	1.6895	11.4913	0.1470	0.0870	3.6133
10	0.5584	7.3601	29.6023	1.7908	13.1808	0.1359	0.0759	4.0220
11	0.5268	7.8869	34.8702	1.8983	14.9716	0.1268	0.0668	4.4213
12	0.4970	8.3838	40.3369	2.0122	16.8699	0.1193	0.0593	4.8113
13	0.4688	8.8527	45.9629	2.1329	18.8821	0.1130	0.0530	5.1920
14	0.4423	9.2950	51.7128	2.2609	21.0151	0.1076	0.0476	5.5635
15	0.4173	9.7122	57.5546	2.3966	23.2760	0.1030	0.0430	5.9260
16	0.3936	10.1059	63.4592	2.5404	25.6725	0.0990	0.0390	6.2794
17	0.3714	10.4773	69.4011	2.6928	28.2129	0.0954	0.0354	6.6240
18	0.3505	10.8276	75.3569	2.8543	30.9057	0.0924	0.0324	6.9597
19	0.3305	11.1581	81.3062	3.0256	33.7600	0.0896	0.0296	7.2867
20	0.3118	11.4699	87.2304	3.2071	36.7856	0.0872	0.0272	7.6051
21	0.2942	11.7641	93.1136	3.3996	39.9927	0.0850	0.0250	7.9151
22	0.2775	12.0416	98.9412	3.6035	43.3923	0.0830	0.0230	8.2166
23	0.2618	12.3034	104.7007	3.8197	46.9958	0.0813	0.0213	8.5099
24	0.2470	12.5504	110.3812	4.0489	50.8156	0.0797	0.0197	8.7951
25	0.2330	12.7834	115.9732	4.2919	54.8645	0.0782	0.0182	9.0722
30	0.1741	13.7648	142.3588	5.7435	79.0582	0.0726	0.0126	10.3422
40	0.0972	15.0463	185.9568	10.2857	154.7620	0.0665	0.0065	12.3590
50	0.0543	15.7619	217.4574	18.4202	290.3359	0.0634	0.0034	13.7964
60	0.0303	16.1614	239.0428	32.9877	533.1282	0.0619	0.0019	14.7909
100	0.0029	16.6175	272.0471	339.3021	5,638.3681	0.0602	0.0002	16.3711

Factor Table - $\boldsymbol{i}=\mathbf{8 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	$\boldsymbol{P} / \boldsymbol{A}$	P / G	$\boldsymbol{F} / \mathbf{P}$	$\boldsymbol{F} / \boldsymbol{A}$	A/P	$\boldsymbol{A} / \boldsymbol{F}$	A/G
1	0.9259	0.9259	0.0000	1.0800	1.0000	1.0800	1.0000	0.0000
2	0.8573	1.7833	0.8573	1.1664	2.0800	0.5608	0.4808	0.4808
3	0.7938	2.5771	2.4450	1.2597	3.2464	0.3880	0.3080	0.9487
4	0.7350	3.3121	4.6501	1.3605	4.5061	0.3019	0.2219	1.4040
5	0.6806	3.9927	7.3724	1.4693	5.8666	0.2505	0.1705	1.8465
6	0.6302	4.6229	10.5233	1.5869	7.3359	0.2163	0.1363	2.2763
7	0.5835	5.2064	14.0242	1.7138	8.9228	0.1921	0.1121	2.6937
8	0.5403	5.7466	17.8061	1.8509	10.6366	0.1740	0.0940	3.0985
9	0.5002	6.2469	21.8081	1.9990	12.4876	0.1601	0.0801	3.4910
10	0.4632	6.7101	25.9768	2.1589	14.4866	0.1490	0.0690	3.8713
11	0.4289	7.1390	30.2657	2.3316	16.6455	0.1401	0.0601	4.2395
12	0.3971	7.5361	34.6339	2.5182	18.9771	0.1327	0.0527	4.5957
13	0.3677	7.9038	39.0463	2.7196	21.4953	0.1265	0.0465	4.9402
14	0.3405	8.2442	43.4723	2.9372	24.2149	0.1213	0.0413	5.2731
15	0.3152	8.5595	47.8857	3.1722	27.1521	0.1168	0.0368	5.5945
16	0.2919	8.8514	52.2640	3.4259	30.3243	0.1130	0.0330	5.9046
17	0.2703	9.1216	56.5883	3.7000	33.7502	0.1096	0.0296	6.2037
18	0.2502	9.3719	60.8426	3.9960	37.4502	0.1067	0.0267	6.4920
19	0.2317	9.6036	65.0134	4.3157	41.4463	0.1041	0.0241	6.7697
20	0.2145	9.8181	69.0898	4.6610	45.7620	0.1019	0.0219	7.0369
21	0.1987	10.0168	73.0629	5.0338	50.4229	0.0998	0.0198	7.2940
22	0.1839	10.2007	76.9257	5.4365	55.4568	0.0980	0.0180	7.5412
23	0.1703	10.3711	80.6726	5.8715	60.8933	0.0964	0.0164	7.7786
24	0.1577	10.5288	84.2997	6.3412	66.7648	0.0950	0.0150	8.0066
25	0.1460	10.6748	87.8041	6.8485	73.1059	0.0937	0.0137	8.2254
30	0.0994	11.2578	103.4558	10.0627	113.2832	0.0888	0.0088	9.1897
40	0.0460	11.9246	126.0422	21.7245	259.0565	0.0839	0.0039	10.5699
50	0.0213	12.2335	139.5928	46.9016	573.7702	0.0817	0.0017	11.4107
60	0.0099	12.3766	147.3000	101.2571	1,253.2133	0.0808	0.0008	11.9015
100	0.0005	12.4943	155.6107	2,199.7613	27,484.5157	0.0800		12.4545

Factor Table $\boldsymbol{- i}=\mathbf{1 0 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	$\boldsymbol{P} / \boldsymbol{A}$	P / G	$\boldsymbol{F} / \mathbf{P}$	$\boldsymbol{F} / \boldsymbol{A}$	A/P	A/F	A / G
1	0.9091	0.9091	0.0000	1.1000	1.0000	1.1000	1.0000	0.0000
2	0.8264	1.7355	0.8264	1.2100	2.1000	0.5762	0.4762	0.4762
3	0.7513	2.4869	2.3291	1.3310	3.3100	0.4021	0.3021	0.9366
4	0.6830	3.1699	4.3781	1.4641	4.6410	0.3155	0.2155	1.3812
5	0.6209	3.7908	6.8618	1.6105	6.1051	0.2638	0.1638	1.8101
6	0.5645	4.3553	9.6842	1.7716	7.7156	0.2296	0.1296	2.2236
7	0.5132	4.8684	12.7631	1.9487	9.4872	0.2054	0.1054	2.6216
8	0.4665	5.3349	16.0287	2.1436	11.4359	0.1874	0.0874	3.0045
9	0.4241	5.7590	19.4215	2.3579	13.5735	0.1736	0.0736	3.3724
10	0.3855	6.1446	22.8913	2.5937	15.9374	0.1627	0.0627	3.7255
11	0.3505	6.4951	26.3962	2.8531	18.5312	0.1540	0.0540	4.0641
12	0.3186	6.8137	29.9012	3.1384	21.3843	0.1468	0.0468	4.3884
13	0.2897	7.1034	33.3772	3.4523	24.5227	0.1408	0.0408	4.6988
14	0.2633	7.3667	36.8005	3.7975	27.9750	0.1357	0.0357	4.9955
15	0.2394	7.6061	40.1520	4.1772	31.7725	0.1315	0.0315	5.2789
16	0.2176	7.8237	43.4164	4.5950	35.9497	0.1278	0.0278	5.5493
17	0.1978	8.0216	46.5819	5.5045	40.5447	0.1247	0.0247	5.8071
18	0.1799	8.2014	49.6395	5.5599	45.5992	0.1219	0.0219	6.0526
19	0.1635	8.3649	52.5827	6.1159	51.1591	0.1195	0.0195	6.2861
20	0.1486	8.5136	55.4069	6.7275	57.2750	0.1175	0.0175	6.5081
21	0.1351	8.6487	58.1095	7.4002	64.0025	0.1156	0.0156	6.7189
22	0.1228	8.7715	60.6893	8.1403	71.4027	0.1140	0.0140	6.9189
23	0.1117	8.8832	63.1462	8.9543	79.5430	0.1126	0.0126	7.1085
24	0.1015	8.9847	65.4813	9.8497	88.4973	0.1113	0.0113	7.2881
25	0.0923	9.0770	67.6964	10.8347	98.3471	0.1102	0.0102	7.4580
30	0.0573	9.4269	77.0766	17.4494	164.4940	0.1061	0.0061	8.1762
40	0.0221	9.7791	88.9525	45.2593	442.5926	0.1023	0.0023	9.0962
50	0.0085	9.9148	94.8889	117.3909	1,163.9085	0.1009	0.0009	9.5704
60	0.0033	9.9672	97.7010	304.4816	3,034.8164	0.1003	0.0003	9.8023
100	0.0001	9.9993	99.9202	13,780.6123	137,796.1234	0.1000		9.9927

Factor Table $\boldsymbol{- i}=\mathbf{1 2 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	$\boldsymbol{P} / \boldsymbol{A}$	$\boldsymbol{P} / \boldsymbol{G}$	$\boldsymbol{F} / \boldsymbol{P}$	$\boldsymbol{F} / \boldsymbol{A}$	A / P	$\boldsymbol{A} / \boldsymbol{F}$	A / G
1	0.8929	0.8929	0.0000	1.1200	1.0000	1.1200	1.0000	0.0000
2	0.7972	1.6901	0.7972	1.2544	2.1200	0.5917	0.4717	0.4717
3	0.7118	2.4018	2.2208	1.4049	3.3744	0.4163	0.2963	0.9246
4	0.6355	3.0373	4.1273	1.5735	4.7793	0.3292	0.2092	1.3589
5	0.5674	3.6048	6.3970	1.7623	6.3528	0.2774	0.1574	1.7746
6	0.5066	4.1114	8.9302	1.9738	8.1152	0.2432	0.1232	2.1720
7	0.4523	4.5638	11.6443	2.2107	10.0890	0.2191	0.0991	2.5515
8	0.4039	4.9676	14.4714	2.4760	12.2997	0.2013	0.0813	2.9131
9	0.3606	5.3282	17.3563	2.7731	14.7757	0.1877	0.0677	3.2574
10	0.3220	5.6502	20.2541	3.1058	17.5487	0.1770	0.0570	3.5847
11	0.2875	5.9377	23.1288	3.4785	20.6546	0.1684	0.0484	3.8953
12	0.2567	6.1944	25.9523	3.8960	24.1331	0.1614	0.0414	4.1897
13	0.2292	6.4235	28.7024	4.3635	28.0291	0.1557	0.0357	4.4683
14	0.2046	6.6282	31.3624	4.8871	32.3926	0.1509	0.0309	4.7317
15	0.1827	6.8109	33.9202	5.4736	37.2797	0.1468	0.0268	4.9803
16	0.1631	6.9740	36.3670	6.1304	42.7533	0.1434	0.0234	5.2147
17	0.1456	7.1196	38.6973	6.8660	48.8837	0.1405	0.0205	5.4353
18	0.1300	7.2497	40.9080	7.6900	55.7497	0.1379	0.0179	5.6427
19	0.1161	7.3658	42.9979	8.6128	63.4397	0.1358	0.0158	5.8375
20	0.1037	7.4694	44.9676	9.6463	72.0524	0.1339	0.0139	6.0202
21	0.0926	7.5620	46.8188	10.8038	81.6987	0.1322	0.0122	6.1913
22	0.0826	7.6446	48.5543	12.1003	92.5026	0.1308	0.0108	6.3514
23	0.0738	7.7184	50.1776	13.5523	104.6029	0.1296	0.0096	6.5010
24	0.0659	7.7843	51.6929	15.1786	118.1552	0.1285	0.0085	6.6406
25	0.0588	7.8431	53.1046	17.0001	133.3339	0.1275	0.0075	6.7708
30	0.0334	8.0552	58.7821	29.9599	241.3327	0.1241	0.0041	7.2974
40	0.0107	8.2438	65.1159	93.0510	767.0914	0.1213	0.0013	7.8988
50	0.0035	8.3045	67.7624	289.0022	2,400.0182	0.1204	0.0004	8.1597
60	0.0011	8.3240	68.8100	897.5969	7,471.6411	0.1201	0.0001	8.2664
100		8.3332	69.4336	83,522.2657	696,010.5477	0.1200		8.3321

Factor Table $-\boldsymbol{i}=\mathbf{1 8 . 0 0 \%}$

n	$\boldsymbol{P} / \boldsymbol{F}$	$\boldsymbol{P} / \boldsymbol{A}$	P / G	$\boldsymbol{F} / \mathbf{P}$	$\boldsymbol{F} / \boldsymbol{A}$	\boldsymbol{A} / P	A/F	A/G
1	0.8475	0.8475	0.0000	1.1800	1.0000	1.1800	1.0000	0.0000
2	0.7182	1.5656	0.7182	1.3924	2.1800	0.6387	0.4587	0.4587
3	0.6086	2.1743	1.9354	1.6430	3.5724	0.4599	0.2799	0.8902
4	0.5158	2.6901	3.4828	1.9388	5.2154	0.3717	0.1917	1.2947
5	0.4371	3.1272	5.2312	2.2878	7.1542	0.3198	0.1398	1.6728
6	0.3704	3.4976	7.0834	2.6996	9.4423	0.2859	0.1059	2.0252
7	0.3139	3.8115	8.9670	3.1855	12.1415	0.2624	0.0824	2.3526
8	0.2660	4.0776	10.8292	3.7589	15.3270	0.2452	0.0652	2.6558
9	0.2255	4.3030	12.6329	4.4355	19.0859	0.2324	0.0524	2.9358
10	0.1911	4.4941	14.3525	5.2338	23.5213	0.2225	0.0425	3.1936
11	0.1619	4.6560	15.9716	6.1759	28.7551	0.2148	0.0348	3.4303
12	0.1372	4.7932	17.4811	7.2876	34.9311	0.2086	0.0286	3.6470
13	0.1163	4.9095	18.8765	8.5994	42.2187	0.2037	0.0237	3.8449
14	0.0985	5.0081	20.1576	10.1472	50.8180	0.1997	0.0197	4.0250
15	0.0835	5.0916	21.3269	11.9737	60.9653	0.1964	0.0164	4.1887
16	0.0708	5.1624	22.3885	14.1290	72.9390	0.1937	0.0137	4.3369
17	0.0600	5.2223	23.3482	16.6722	87.0680	0.1915	0.0115	4.4708
18	0.0508	5.2732	24.2123	19.6731	103.7403	0.1896	0.0096	4.5916
19	0.0431	5.3162	24.9877	23.2144	123.4135	0.1881	0.0081	4.7003
20	0.0365	5.3527	25.6813	27.3930	146.6280	0.1868	0.0068	4.7978
21	0.0309	5.3837	26.3000	32.3238	174.0210	0.1857	0.0057	4.8851
22	0.0262	5.4099	26.8506	38.1421	206.3448	0.1848	0.0048	4.9632
23	0.0222	5.4321	27.3394	45.0076	244.4868	0.1841	0.0041	5.0329
24	0.0188	5.4509	27.7725	53.1090	289.4944	0.1835	0.0035	5.0950
25	0.0159	5.4669	28.1555	62.6686	342.6035	0.1829	0.0029	5.1502
30	0.0070	5.5168	29.4864	143.3706	790.9480	0.1813	0.0013	5.3448
40	0.0013	5.5482	30.5269	750.3783	4,163.2130	0.1802	0.0002	5.5022
50	0.0003	5.5541	30.7856	3,927.3569	21,813.0937	0.1800		5.5428
60	0.0001	5.5553	30.8465	20,555.1400	114,189.6665	0.1800		5.5526
100		5.5556	30.8642	15,424,131.91	85,689,616.17	0.1800		5.5555

ETHICS

Engineering is considered to be a "profession" rather than an "occupation" because of several important characteristics shared with other recognized learned professions, law, medicine, and theology: special knowledge, special privileges, and special responsibilities. Professions are based on a large knowledge base requiring extensive training. Professional skills are important to the well-being of society. Professions are self-regulating, in that they control the training and evaluation processes that admit new persons to the field. Professionals have autonomy in the workplace; they are expected to utilize their independent judgment in carrying out their professional responsibilities. Finally, professions are regulated by ethical standards. ${ }^{1}$
The expertise possessed by engineers is vitally important to public welfare. In order to serve the public effectively, engineers must maintain a high level of technical competence. However, a high level of technical expertise without adherence to ethical guidelines is as much a threat to public welfare as is professional incompetence. Therefore, engineers must also be guided by ethical principles.

The ethical principles governing the engineering profession are embodied in codes of ethics. Such codes have been adopted by state boards of registration, professional engineering societies, and even by some private industries. An example of one such code is the NCEES Model Rules of Professional Conduct, which is presented here in its entirety. As part of his/her responsibility to the public, an engineer is responsible for knowing and abiding by the code.
The three major sections of the model rules address (1) Licensee's Obligations to Society, (2) Licensee's Obligations to Employers and Clients, and (3) Licensee's Obligations to Other Licensees. The principles amplified in these sections are important guides to appropriate behavior of professional engineers.

Application of the code in many situations is not controversial. However, there may be situations in which applying the code may raise more difficult issues. In particular, there may be circumstances in which terminology in the code is not clearly defined, or in which two sections of the code may be in conflict. For example, what constitutes "valuable consideration" or "adequate" knowledge may be interpreted differently by qualified professionals. These types of questions are called conceptual issues, in which definitions of terms may be in dispute. In other situations, factual issues may also affect ethical dilemmas. Many decisions regarding engineering design may be based upon interpretation of disputed or incomplete information. In addition, tradeoffs revolving around competing issues of risk $v s$. benefit, or safety $v s$. economics may require judgments that are not fully addressed simply by application of the code.

No code can give immediate and mechanical answers to all ethical and professional problems that an engineer may face. Creative problem solving is often called for in ethics, just as it is in other areas of engineering.

NCEES Model Rules of Professional Conduct

PREAMBLE

To comply with the purpose of the (identify jurisdiction, licensing statute)-which is to safeguard life, health, and property, to promote the public welfare, and to maintain a high standard of integrity and practice- the (identify board, licensing statute) has developed the following Rules of Professional Conduct. These rules shall be binding on every person holding a certificate of licensure to offer or perform engineering or land surveying services in this state. All persons licensed under (identify jurisdiction's licensing statute) are required to be familiar with the licensing statute and these rules. The Rules of Professional Conduct delineate specific obligations the licensee must meet. In addition, each licensee is charged with the responsibility of adhering to the highest standards of ethical and moral conduct in all aspects of the practice of professional engineering and land surveying.

The practice of professional engineering and land surveying is a privilege, as opposed to a right. All licensees shall exercise their privilege of practicing by performing services only in the areas of their competence according to current standards of technical competence.

Licensees shall recognize their responsibility to the public and shall represent themselves before the public only in an objective and truthful manner.
They shall avoid conflicts of interest and faithfully serve the legitimate interests of their employers, clients, and customers within the limits defined by these rules. Their professional reputation shall be built on the merit of their services, and they shall not compete unfairly with others.

The Rules of Professional Conduct as promulgated herein are enforced under the powers vested by (identify jurisdiction's enforcing agency). In these rules, the word "licensee" shall mean any person holding a license or a certificate issued by (identify jurisdiction's licensing agency).

[^1]
I. LICENSEE'S OBLIGATION TO SOCIETY

a. Licensees, in the performance of their services for clients, employers, and customers, shall be cognizant that their first and foremost responsibility is to the public welfare.
b. Licensees shall approve and seal only those design documents and surveys that conform to accepted engineering and land surveying standards and safeguard the life, health, property, and welfare of the public.
c. Licensees shall notify their employer or client and such other authority as may be appropriate when their professional judgment is overruled under circumstances where the life, health, property, or welfare of the public is endangered.
d. Licensees shall be objective and truthful in professional reports, statements, or testimony. They shall include all relevant and pertinent information in such reports, statements, or testimony.
e. Licensees shall express a professional opinion publicly only when it is founded upon an adequate knowledge of the facts and a competent evaluation of the subject matter.
f. Licensees shall issue no statements, criticisms, or arguments on technical matters which are inspired or paid for by interested parties, unless they explicitly identify the interested parties on whose behalf they are speaking and reveal any interest they have in the matters.
g. Licensees shall not permit the use of their name or firm name by, nor associate in the business ventures with, any person or firm which is engaging in fraudulent or dishonest business or professional practices.
h. Licensees having knowledge of possible violations of any of these Rules of Professional Conduct shall provide the board with the information and assistance necessary to make the final determination of such violation.

II. LICENSEE'S OBLIGATION TO EMPLOYER AND CLIENTS

a. Licensees shall undertake assignments only when qualified by education or experience in the specific technical fields of engineering or land surveying involved.
b. Licensees shall not affix their signatures or seals to any plans or documents dealing with subject matter in which they lack competence, nor to any such plan or document not prepared under their direct control and personal supervision.
c. Licensees may accept assignments for coordination of an entire project, provided that each design segment is signed and sealed by the licensee responsible for preparation of that design segment.
d. Licensees shall not reveal facts, data, or information obtained in a professional capacity without the prior consent of the client or employer except as authorized or required by law.
e. Licensees shall not solicit or accept financial or other valuable consideration, directly or indirectly, from contractors, their agents, or other parties in connection with work for employers or clients.
f. Licensees shall make full prior disclosures to their employers or clients of potential conflicts of interest or other circumstances which could influence or appear to influence their judgment or the quality of their service.
g. Licensees shall not accept compensation, financial or otherwise, from more than one party for services pertaining to the same project, unless the circumstances are fully disclosed and agreed to by all interested parties.
h. Licensees shall not solicit or accept a professional contract from a governmental body on which a principal or officer of their organization serves as a member. Conversely, licensees serving as members, advisors, or employees of a government body or department, who are the principals or employees of a private concern, shall not participate in decisions with respect to professional services offered or provided by said concern to the governmental body which they serve.

III. LICENSEE'S OBLIGATION TO OTHER LICENSEES

a. Licensees shall not falsify or permit misrepresentation of their, or their associates', academic or professional qualifications. They shall not misrepresent or exaggerate their degree of responsibility in prior assignments nor the complexity of said assignments. Presentations incident to the solicitation of employment or business shall not misrepresent pertinent facts concerning employers, employees, associates, joint ventures, or past accomplishments.
b. Licensees shall not offer, give, solicit, or receive, either directly or indirectly, any commission, or gift, or other valuable consideration in order to secure work, and shall not make any political contribution with the intent to influence the award of a contract by public authority.
c. Licensees shall not attempt to injure, maliciously or falsely, directly or indirectly, the professional reputation, prospects, practice, or employment of other licensees, nor indiscriminately criticize other licensees' work.

CHEMICAL ENGINEERING

For additional information concerning Heat Transfer and Fluid Mechanics, refer to the HEAT TRANSFER, THERMODYNAMICS, or FLUID MECHANICS sections.

CHEMICAL THERMODYNAMICS

Vapor-Liquid Equilibrium

For a multi-component mixture at equilibrium
$\hat{f}_{i}^{V}=\hat{f}_{i}^{L}$
where $\hat{f}_{i}^{V}=$ fugacity of component i in the vapor phase
$\hat{f}_{i}^{L}=$ fugacity of component i in the liquid phase
Fugacities of component i in a mixture are commonly calculated in the following ways:
for a liquid $\quad \hat{f}_{i}^{L}=x_{i} \gamma_{i} f_{i}^{L}$
where $\mathrm{x}_{i}=$ mole fraction of component i
$\gamma_{i}=$ activity coefficient of component i
$f_{i}^{\mathrm{L}}=$ fugacity of pure liquid component i
For a vapor $\hat{f}_{i}^{V}=y_{i} \hat{\Phi}_{i} P$
where $\mathrm{y}_{i}=$ mole fraction of component i in the vapor
$\hat{\Phi}_{i}=$ fugacity coefficient of component i in the vapor
$P=$ system pressure
The activity coefficient γ_{i} is a correction for liquid phase nonideality. Many models have been proposed for γ_{i} such as the Van Laar model:
$\ln \gamma_{1}=A_{12}\left(1+\frac{A_{12} x_{1}}{A_{21} x_{2}}\right)^{-2}$
$\ln \gamma_{2}=A_{21}\left(1+\frac{A_{21} x_{2}}{A_{12} x_{1}}\right)^{-2}$
where: $\gamma_{1}=$ activity coefficient of component 1 in a 2 component system.
$\gamma_{2}=$ activity coefficient of component 2 in a 2 component system.
$A_{12}, A_{21}=$ constants, typically fitted from experimental data.
The pure component fugacity is calculated as:

$$
f_{i}^{\mathrm{L}}=\Phi_{i}^{\text {sat }} P_{i}^{\text {sat }} \exp \left\{v_{i}^{L}\left(P-P_{i}^{\text {sat }}\right) /(R T)\right\}
$$

where $\Phi_{i}^{\text {sat }}=$ fugacity coefficient of pure saturated i
$P_{i}^{\text {sat }}=$ saturation pressure of pure i
$v_{i}^{L}=$ specific volume of pure liquid i
$R=$ Ideal Gas Law Constant

Often at system pressures close to atmospheric:

$$
f_{i}^{\mathrm{L}} \cong P_{i}^{\mathrm{sat}}
$$

The fugacity coefficient $\hat{\Phi}_{i}$ for component i in the vapor is calculated from an equation of state (e.g., Virial). Sometimes it is approximated by a pure component value from a correlation. Often at pressures close to atmospheric, $\hat{\Phi}_{i}=1$. The fugacity coefficient is a correction for vapor phase nonideality.
For sparingly soluble gases the liquid phase is sometimes represented as

$$
\hat{f}_{i}^{L}=x_{i} k_{i}
$$

where k_{i} is a constant set by experiment (Henry's constant). Sometimes other concentration units are used besides mole fraction with a corresponding change in k_{i}.

Chemical Reaction Equilibrium

For reaction

$$
\begin{array}{r}
\mathrm{aA}+\mathrm{bB} \leftrightharpoons \mathrm{cC}+\mathrm{dD} \\
\Delta G^{\mathrm{o}}=-R T \ln K_{a} \\
K_{a}=\frac{\left(\hat{a}_{C}^{c}\right)\left(\hat{a}_{D}^{d}\right)}{\left(\hat{a}_{A}^{a}\right)\left(\hat{a}_{B}^{b}\right)}=\prod_{i}\left(\hat{a}_{i}\right)^{v_{i}}
\end{array}
$$

where: $\hat{a}_{i}=$ activity of component $\mathrm{i}=\frac{\hat{f}_{i}}{f_{i}^{o}}$

$$
\begin{aligned}
& f_{i}^{0}=\text { fugacity of pure } i \text { in its standard state } \\
& v_{i}=\text { stoichiometric coefficient of component } i \\
& \Delta G^{\mathrm{o}}=\text { standard Gibbs energy change of reaction } \\
& K_{a}=\text { chemical equilibrium constant }
\end{aligned}
$$

For mixtures of ideal gases:
$f_{i}^{\mathrm{o}}=$ unit pressure, often 1 bar

$$
\hat{f}_{i}=y_{i} P=p_{i}
$$

where $p_{i}=$ partial pressure of component i
Then $\quad K_{a}=K_{p}=\frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{A}^{a}\right)\left(p_{B}^{b}\right)}=P^{c+d-a-b}\left(\frac{\left(y_{C}^{c}\right)\left(y_{D}^{d}\right)}{\left(y_{A}^{a}\right)\left(y_{B}^{b}\right)}\right.$
For solids $\quad \hat{a}_{i}=1$
For liquids $\quad \hat{a}_{i}=\mathrm{x}_{i} \gamma_{i}$
The effect of temperature on the equilibrium constant is

$$
\frac{\mathrm{d} \ln K}{\mathrm{~d} T}=\frac{\Delta H^{o}}{R T^{2}}
$$

where $\Delta H^{0}=$ standard enthalpy change of reaction.

HEATS OF REACTION

For a chemical reaction the associated energy can be defined in terms of heats of formation of the individual species $\left(\Delta \hat{H}_{f}^{o}\right)$ at the standard state

$$
\left(\Delta \hat{H}_{\mathrm{r}}^{\mathrm{o}}\right)=\sum_{\text {products }} v_{i}\left(\Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}}\right)_{i}-\sum_{\text {reactants }} v_{i}\left(\Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}}\right)_{i}
$$

The standard state is $25^{\circ} \mathrm{C}$ and 1 bar.
The heat of formation is defined as the enthalpy change associated with the formation of a compound from its atomic species as they normally occur in nature (i.e., $\mathrm{O}_{2(\mathrm{~g})}, \mathrm{H}_{2(\mathrm{~g})}$, $\mathrm{C}_{\text {(solid) }}$, etc.)
The heat of reaction for a combustion process using oxygen is also known as the heat of combustion. The principal products are $\mathrm{CO}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{e})}$.

CHEMICAL REACTION ENGINEERING

A chemical reaction may be expressed by the general equation

$$
a \mathrm{~A}+b \mathrm{~B} \leftrightarrow c \mathrm{C}+d \mathrm{D} .
$$

The rate of reaction of any component is defined as the moles of that component formed per unit time per unit volume.

$$
\begin{aligned}
& -r_{A}=-\frac{1}{V} \frac{d N_{A}}{d t} \quad \text { [negative because A disappears] } \\
& -r_{A}=\frac{-d C_{A}}{d t} \text { if } \mathrm{V} \text { is constant }
\end{aligned}
$$

The rate of reaction is frequently expressed by

$$
-r_{A}=k f_{r}\left(C_{A}, C_{B}, \ldots\right), \text { where }
$$

$k=$ reaction rate constant and
$C_{I}=$ concentration of component I.
The Arrhenius equation gives the dependence of k on temperature

$$
k=A e^{-E_{a} / \bar{R} T} \text {, where }
$$

$A=$ pre-exponential or frequency factor,
$E_{a}=$ activition energy $(\mathrm{J} / \mathrm{mol}, \mathrm{cal} / \mathrm{mol})$,
$T=$ temperature (K), and
$\bar{R}=$ gas law constant $[8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$,
In the conversion of A, the fractional conversion X_{A}, is defined as the moles of A reacted per mole of A fed.

$$
X_{A}=\left(C_{A 0}-C_{A}\right) / C_{A 0} \quad \text { if } \mathrm{V} \text { is constant }
$$

Reaction Order

If $-r_{A}=k C_{A}{ }^{x} C_{B}{ }^{y}$
the reaction is x order with respect to reactant A and y order with respect to reactant B. The overall order is

$$
n=x+y
$$

BATCH REACTOR, CONSTANT T AND V

Zero-Order Reaction

$-r_{A}=$	$k C_{A}{ }^{o}=k(1)$	
$-d C_{A} / d t=$	k	or
$C_{A}=$	$C_{A o}-k t$	
$d X_{A} / d t=$	$k / C_{A o}$	or
$C_{A o} X_{A}=$	$k t$	

First-Order Reaction

$-\mathrm{r}_{A}=$	$k C_{A}$	
$-d C_{A} / d t=$	$k C_{A}$	or
$\ln \left(C_{A} / C_{A O}\right)=$	$-k t$	
$d X_{A} / d t=$	$k\left(1-X_{A}\right)$	or
$\ln \left(1-X_{A}\right)=$	$-k t$	

Second-Order Reaction

$$
\begin{array}{lr}
-\mathrm{r}_{A}=k C_{A}{ }^{2} & \text { or } \\
-d C_{A} / d t=k C_{A}{ }^{2} & \\
1 / C_{A}-1 / C_{A o}=k t & \\
d X_{A} / d t=k C_{A o}\left(1-X_{A}\right)^{2} & \text { or } \\
\left.X_{A} \Lambda C_{A o}\left(1-X_{A}\right)\right]=k t &
\end{array}
$$

Batch Reactor, General

For a well-mixed, constant-volume, batch reactor

$$
\begin{aligned}
& -\mathrm{r}_{A}=d C_{A} / d t \\
& t=-C_{A o} \int_{o}^{X_{A}} d X_{A} /\left(-r_{A}\right)
\end{aligned}
$$

If the volume of the reacting mass varies with the conversion according to

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{\mathrm{X}_{\mathrm{A}=0}}\left(1+\varepsilon_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}\right) \\
& \varepsilon_{A}=\frac{V_{X_{A}=1}-V_{X_{A}}=0}{V_{X_{A}=0}}
\end{aligned}
$$

then

$$
t=-\left.C_{A o}\right|_{o} ^{X_{A}} d X_{A} /\left[\left(1+\varepsilon_{A} X_{A}\right)\left(-r_{A}\right)\right]
$$

FLOW REACTORS, STEADY STATE

Space-time τ is defined as the reactor volume divided by the inlet volumetric feed rate. Space-velocity $S V$ is the reciprocal of space-time, $S V=1 / \tau$.

Plug-Flow Reactor (PFR)

$$
\tau=\frac{C_{A o} V_{P F R}}{F_{A o}}=C_{A o} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)} \text {, where }
$$

$\mathrm{F}_{\mathrm{Ao}}=$ moles of A fed per unit time.

Continuous Stirred Tank Reactor (CSTR)

For a constant volume, well-mixed, CSTR

$$
\frac{\tau}{C_{\mathrm{Ao}}}=\frac{V_{\mathrm{CSTR}}}{F_{\mathrm{Ao}}}=\frac{X_{\mathrm{A}}}{-r_{\mathrm{A}}}
$$

where $-r_{A}$ is evaluated at exit stream conditions.
Continuous Stirred Tank Reactors in Series
With a first-order reaction $A \rightarrow R$, no change in volume.

$$
\begin{aligned}
\tau_{N-\text { reactors }} & =N \tau_{\text {individual }} \\
& \frac{N}{k}\left[\left(\frac{C_{A o}}{C_{A N}}\right)^{1 / N}-1\right]
\end{aligned}
$$

where
$N=$ number of CSTRs (equal volume) in series and $C_{A N}=$ concentration of A leaving the N th CSTR.

DISTILLATION

Flash (or equilibrium) Distillation

Component material balance:

$$
F z_{F}=y V+x L
$$

Overall material balance:

$$
F=V+L
$$

Differential (simple or Rayleigh) Distillation

$$
\ln \left(\frac{W}{W_{o}}\right)=\int_{x_{o}}^{x} \frac{d x}{y-x}
$$

When the relative volatility α is constant,

$$
y=\alpha x /\lfloor 1+(\alpha-1) x]
$$

can be substituted to give

$$
\ln \left(\frac{W}{W_{o}}\right)=\frac{1}{(\alpha-1)} \ln \left[\frac{x\left(1-x_{o}\right)}{x_{o}(1-x)}\right]+\ln \left[\frac{1-x_{o}}{1-x}\right]
$$

For binary system following Raoult's Law

$$
\alpha=(y / x)_{a} /(y / x)_{b}=p_{a} / p_{b} \text {, where }
$$

$p_{i}=$ partial pressure of component i.

Continuous Distillation (binary system)

Constant molal overflow is assumed (trays counted downward)

TOTAL MATERIAL BALANCE

$$
\begin{array}{ll}
F & =D+B \\
F z_{F} & =D x_{D}+B x_{B}
\end{array}
$$

OPERATING LINES

Rectifying Section

Total Material:

$$
V_{n+1}=L_{n}+D
$$

Component A :

$$
\begin{aligned}
& V_{n+1} y_{n+1}=L_{n} x_{n}+D x_{D} \\
& y_{n+1}=\left[L_{n} /\left(L_{n}+D\right)\right] x_{n}+D x_{D} /\left(L_{n}+D\right)
\end{aligned}
$$

Stripping Section

Total Material:

$$
L_{m}=V_{m+1}+B
$$

Component A :

$$
\begin{aligned}
& L_{m} x_{m}=V_{m+1} y_{m+1}+B x_{B} \\
& y_{m+1}=\left[L_{m} /\left(L_{m}-B\right)\right] x_{m}-B x_{B} /\left(L_{m}-B\right)
\end{aligned}
$$

Reflux Ratio

Ratio of reflux to overhead product

$$
R_{D}=L / D=(V-D) / D
$$

Minimum reflux ratio is defined as that value which results in an infinite number of contact stages. For a binary system the equation of the operating line is

$$
y=\frac{R_{\min }}{R_{\min }+1} x+\frac{x_{D}}{R_{\min }+1}
$$

Feed Condition Line

slope $=q /(q-1)$, where
$q=\frac{\text { heat to convert one mol of feed to saturated vapor }}{\text { molar heat of vaporization }}$

Murphree Plate Efficiency

$E_{M E}=\left(y_{n}-y_{n+1}\right) /\left(y^{*}{ }_{n}-y_{n+1}\right)$, where
$y \quad=$ concentration of vapor above plate n,
$y_{n+1}=$ concentration of vapor entering from plate below n, and
$y_{n}^{*}=$ concentration of vapor in equilibrium with liquid leaving plate n.

A similar expression can be written for the stripping section by replacing n with m.
Definitions:
$\alpha=$ relative volatility,
B = molar bottoms-product rate,
D = molar overhead-product rate,
$F=$ molar feed rate,
$L=$ molar liquid downflow rate,
$R_{D}=$ ratio of reflux to overhead product,
$V=$ molar vapor upflow rate,
$W=$ weight in still pot,
$x=$ mole fraction of the more volatile component in the liquid phase, and
$y=$ mole fraction of the more volatile component in the vapor phase.
Subscripts
$B=$ bottoms product,
$D=$ overhead product,
$F=$ feed,
$m=$ any plate in stripping section of column,
$m+1=$ plate below plate m,
$n=$ any plate in rectifying section of column,
$n+1=$ plate below plate n, and
$o=$ original charge in still pot.

[^2]
MASS TRANSFER

Diffusion

MOLECULAR DIFFUSION

Gas:

$$
\frac{N_{A}}{A}=\frac{p_{A}}{P}\left(\frac{N_{A}}{A}+\frac{N_{B}}{A}\right)-\frac{D_{m}}{R T} \frac{\partial p_{A}}{\partial z}
$$

Liquid:

$$
\frac{N_{A}}{A}=x_{A}\left(\frac{N_{A}}{A}+\frac{N_{B}}{A}\right)-C D_{m} \frac{\partial x_{A}}{\partial z}
$$

in which $\left(p_{B}\right)_{l m}$ is the log mean of $p_{B 2}$ and $p_{B 1}$,
UNIDIRECTIONAL DIFFUSION OF A GAS A THROUGH A SECOND STAGNANT GAS B $\left(N_{B}=0\right)$

$$
\frac{N_{A}}{A}=\frac{D_{m} P}{\bar{R} T\left(p_{B}\right)_{\mathrm{lm}}} \times \frac{\left(p_{A 2}-p_{A 1}\right)}{z_{2}-z_{1}}
$$

in which $\left(p_{B}\right)_{\mathrm{lm}}$ is the \log mean of $p_{B 2}$ and $p_{B 1}$,
$N_{I}=$ diffusive flow of component I through area A, in z direction, and
$D_{m}=$ mass diffusivity.

EQUIMOLAR COUNTER-DIFFUSION (GASES)

$\left(N_{B}=-N_{A}\right)$

$$
N_{A} / A=D_{m} /(\bar{R} T) \times\left[\left(p_{A 1}-p_{A 2}\right) /\left(z_{2}-z_{1}\right)\right]
$$

UNSTEADY STATE DIFFUSION IN A GAS

$$
\partial p_{A} / \partial t=D_{m}\left(\partial^{2} p_{A} / \partial z^{2}\right)
$$

CONVECTION

Two-Film Theory (for Equimolar Counter-Diffusion)

$$
\begin{array}{rll}
N_{A} / A & = & k_{G}^{\prime}\left(p_{A G}-p_{A i}\right) \\
& = & k_{L}^{\prime}\left(C_{A i}-C_{A L}\right) \\
& = & K_{G}^{\prime}\left(p_{A G}-p_{A}^{*}\right) \\
& = & K_{L}^{\prime}\left(C_{A} *-C_{A L}\right), \text { where }
\end{array}
$$

$p_{A}{ }^{*}=$ partial pressure in equilibrium with $C_{A L}$ and $C_{A} *=$ concentration in equilibrium with $p_{A G}$.

Overall Coefficients

$$
\begin{aligned}
& 1 / K_{G}^{\prime}=1 / k_{G}^{\prime}+H / k_{L}^{\prime} \\
& 1 / K_{L}^{\prime}=1 / H k_{G}^{\prime}+1 / k_{L}^{\prime}
\end{aligned}
$$

Dimensionless Group Equation (Sherwood)

For the turbulent flow inside a tube the Sherwood number

$$
\left(\frac{k_{m} D}{D_{m}}\right) \text { is given by: }\left(\frac{k_{m} D}{D_{m}}\right)=0.023\left(\frac{D \vee \rho}{\mu}\right)^{0.8}\left(\frac{\mu}{\rho D_{m}}\right)^{1 / 3}
$$

where,
$D=$ inside diameter
$D_{m}=$ diffusion coefficient
$V=$ average velocity in the tube
$\rho=$ fluid density
$\mu=$ fluid viscosity

CIVIL ENGINEERING

GEOTECHNICAL

Definitions

$c=$ Cohesion
$c_{c}=$ Coefficient of Curvature or Gradation
$=\left(D_{30}\right)^{2} /\left[\left(D_{60}\right)\left(D_{10}\right)\right]$
$c_{u}=$ Uniformity coefficient $=D_{60} / D_{10}$
$e \quad=\quad$ Void Ratio $=V_{v} / V_{s}$
$k=$ Coefficient of Permeability $=Q /(i A)$
$q_{u}=$ unconfined compressive strength $=2 c$
$w=$ Water Content $(\%)=\left(W_{w} / W_{s}\right) \times 100$
$C_{c}=$ Compression Index $=\Delta e / \Delta \log p$
$=\left(e_{1}-e_{2}\right) /\left(\log p_{2}-\log p_{1}\right)$
$D_{d}=$ Relative Density (\%)
$=\left[\left(e_{\max }-e\right) /\left(e_{\max }-e_{\min }\right)\right] \times 100$
$=\left[\left(1 / \gamma_{\min }-1 / \gamma_{d}\right) /\left(1 / \gamma_{\min }-1 / \gamma_{\max }\right)\right] \times 100$
$G=$ Specific Gravity $=W_{s} /\left(V_{s} \gamma_{w}\right)$
$\Delta H=$ Settlement $=H\left[C_{c} /\left(1+e_{i}\right)\right] \log \left[\left(p_{i}+\Delta p\right) / p_{i}\right]$
$=H \Delta e /\left(1+e_{i}\right)$
$P I=$ Plasticity Index $=L L-P L$
$S=$ Degree of Saturation (\%) $=\left(V_{w} / V_{v}\right) \times 100$
$Q \quad=k H\left(N_{f} / N_{d}\right) \quad$ (for flow nets, Q per unit width)
$\gamma=$ Total Unit Weight of Soil $=W / V$
$\gamma_{d}=$ Dry Unit Weight of Soil $=W_{s} / V$
$=G \gamma_{w} /(1+e)=\gamma /(1+w)$

γ_{s}	$=\text { Unit Weight of Solids }=W_{s} / V_{s}$
η	$=$ Porosity $=V_{v} / V=e /(1+e)$
ϕ	$=$ Angle of Internal Friction
σ	$=$ Normal Stress $=P / A$
τ	$=$ General Shear Strength $=c+\sigma \tan \phi$
Gw	$=\mathrm{Se}$
K_{a}	$\begin{aligned} & =\text { Coefficient of Active Earth Pressure } \\ & =\tan ^{2}(45-\phi / 2) \end{aligned}$
K_{p}	$\begin{aligned} & =\text { Coefficient of Passive Earth Pressure } \\ & =\tan ^{2}(45+\phi / 2) \end{aligned}$
P_{a}	$=$ Active Resultant Force $=0.5 \gamma \mathrm{H}^{2} K_{a}$
$q_{\text {ult }}$	$=$ Bearing Capacity Equation
	$=c N_{c}+\gamma D_{f} N_{q}+0.5 \gamma B N_{\gamma}$
B	$=$ Width of strip footing
D_{f}	$=$ Depth of footing below surface
FS	$=$ Factor of Safety (Slope Stability)
	$=\frac{\mathrm{cL}+\mathrm{W} \cos \alpha \tan \phi}{\underline{W}}$
	W $\sin \alpha$
C_{v}	$=$ Coefficient of Consolidation $=T H^{2} / t$
C_{c}	$=0.009(L L-10)$
σ^{\prime}	$=$ Effective Stress $=\sigma-u$

$\gamma_{s}=$ Unit Weight of Solids $=W_{s} / V_{s}$
$\eta=$ Porosity $=V_{v} / V=e /(1+e)$
$\phi \quad=$ Angle of Internal Friction
$\sigma=$ Normal Stress $=P / A$
$\tau=$ General Shear Strength $=c+\sigma \tan \phi$
$G w=S e$
$K_{a}=$ Coefficient of Active Earth Pressure
$=\tan ^{2}(45-\phi / 2)$
$=$ Coefficient of Passive Earth Pressure
$=\tan ^{2}(45+\phi / 2)$
$P_{a}=$ Active Resultant Force $=0.5 \gamma H^{2} K_{a}$
$q_{\text {ult }}=$ Bearing Capacity Equation
$=c N_{c}+\gamma D_{f} N_{q}+0.5 \gamma B N_{\gamma}$
$B \quad=$ Width of strip footing
$\mathrm{FS}=$ Factor of Safety (Slope Stability)
$=\frac{\mathrm{cL}+\mathrm{W} \cos \alpha \tan \phi}{\mathrm{W} \sin \alpha}$
$C_{v}=$ Coefficient of Consolidation $=T H^{2} / t$
$C_{c}=0.009(L L-10)$
$\sigma^{\prime}=$ Effective Stress $=\sigma-u$

UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D-2487)

${ }^{\text {a }}$ Division of GM and SM groups into subdivisions of d and u are for roads and airfields only. Subdivision is based on Atterberg limits; suffix d used when L.L. is 28 or less and the P.I. is 6 or less; the suffix u used when L.L. is greater than 28.
${ }^{\mathrm{b}}$ Borderline classification, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example GW-GC, well-graded gravel-sand mixture with clay binder.

STRUCTURAL ANALYSIS

Influence Lines

An influence diagram shows the variation of a function (reaction, shear, bending moment) as a single unit load moves across the structure. An influence line is used to (1) determine the position of load where a maximum quantity will occur and (2) determine the maximum value of the quantity.

Deflection of Trusses and Frames

Principle of virtual work as applied to deflection of trusses:

$$
\Delta=\Sigma F_{Q} \delta L, \text { where }
$$

for temperature:

$$
\delta L=\alpha L(\Delta T)
$$

and for load:
$\delta L=F_{p} L / A E$
Frames:

$$
\Delta=\Sigma\left\{\int m[M /(E I)] d x\right\} \text {, where }
$$

$F_{Q}=$ member force due to unit loads,
$F_{p}=$ member force due to external load,
M = bending moment due to external loads, and
$m=$ bending moment due to unit load.

BEAM FIXED-END MOMENT FORMULAS

$$
\mathrm{FEM}_{A B}=-\frac{P a b^{2}}{L^{2}}
$$

$\mathrm{FEM}_{B A}=+\frac{P a^{2} b}{L^{2}}$
$\operatorname{FEM}_{A B}=-\frac{w_{o} L^{2}}{12}$
$\mathrm{FEM}_{B A}=+\frac{w_{o} L^{2}}{12}$
$\operatorname{FEM}_{A B}=-\frac{w_{o} L^{2}}{30}$
$\mathrm{FEM}_{B A}=+\frac{w_{o} L^{2}}{20}$

в

REINFORCED CONCRETE DESIGN

Ultimate Strength Design

ASTM Standard Reinforcing Bars			
Bar Size No.	Nominal Diameter in.	Nominal Area in. ${ }^{2}$	Nominal Weight lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
$\mathbf{7}$	$\mathbf{0 . 8 7 5}$	$\mathbf{0 . 6 0}$	$\mathbf{2 . 0 4 4}$
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
$\mathbf{1 4}$	$\mathbf{1 . 6 9 3}$	$\mathbf{2 . 2 5}$	$\mathbf{7 . 6 5 0}$
18	2.257	4.00	13.600

DEFINITIONS

$A_{g}=$ gross cross-sectional area
$A_{s}=$ area of tension steel
$A_{v}=$ area of shear reinforcement within a distance s along a member
$b=$ width of section
$b_{w}=$ width of web
$\beta=$ ratio of depth of rectangular stress block to the depth to the neutral axis

$$
=0.85 \geq 0.85-0.05\left(\frac{f_{c}^{\prime}-4,000}{1,000}\right) \geq 0.65
$$

$d \quad=$ effective depth
$E=$ modulus of elasticity of concrete
$f_{c}^{\prime}=$ compressive stress of concrete
$f_{y}=$ yield stress of steel
$M_{n}=$ nominal moment
$M_{u}=$ factored moment
$P_{n}=$ nominal axial load (with minimum eccentricity)
$P_{o}=$ nominal P_{n} for axially loaded column
$\rho=$ reinforcement ratio, tension steel
$\rho_{b}=$ reinforcement ratio for balanced strain condition
$s \quad=$ spacing of shear reinforcement
$V_{c}=$ nominal concrete shear strength
$V_{s}=$ nominal shear strength provided by reinforcement
$V_{u}=$ factored shear force

Reinforcement Limits

$$
\begin{aligned}
& \rho \quad=A_{s} /(b d) \\
& \rho_{\min } \leq \rho \leq 0.75 \rho_{b} \\
& \rho_{\min } \geq \frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} \text { or } \frac{200}{f_{y}} \\
& \rho_{b}=\frac{0.85 \beta f_{c}^{\prime}}{f_{y}}\left(\frac{87,000}{87,000+f_{y}}\right)
\end{aligned}
$$

Moment Design

$$
\left.\begin{array}{l}
\begin{array}{rl}
\phi M_{n} & =\phi 0.85 f_{c}^{\prime} a b(d-a / 2) \\
& =\phi A_{s} f_{y}(d-a / 2)
\end{array} \\
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
\end{array}\right\} \begin{aligned}
& M_{u}=1.4 M_{\text {Dead }}+1.7 M_{\text {Live }} \\
& \phi M_{n} \geq M_{u}
\end{aligned}
$$

Shear Design

$$
\begin{aligned}
& \phi\left(V_{c}+V_{s}\right) \geq V_{u} \\
& V_{u}=1.4 V_{\mathrm{Dead}}+1.7 V_{\mathrm{Live}} \\
& V_{c}=2 \sqrt{f_{c}^{\prime}} b d \\
& V_{s}=A_{v} f_{y} d / s \\
& V_{s(\max)}=8 \sqrt{f_{c}^{\prime}} b d
\end{aligned}
$$

Minimum Shear Reinforcement

$$
\begin{aligned}
& A_{v}=50 b s / f_{y}, \text { when } \\
& V_{u}>\phi V_{c} / 2
\end{aligned}
$$

Maximum Spacing for Stirrups

$s_{\max }=\min \left\{\begin{array}{l}24 \text { inches } \\ d / 2\end{array}\right\}$
If $V_{s}>4 \sqrt{f_{c}^{\prime}} b d$, then
$s_{\max }=\min \left\{\begin{array}{l}12 \text { inches } \\ d / 4\end{array}\right\}$

T-Beams

Effective Flange Width

$$
b_{e}=\min \left\{\begin{array}{l}
1 / 4 \times \text { span length } \\
b_{w}+16 \times \text { slab depth } \\
b_{w}+\text { clear span between beams }
\end{array}\right.
$$

Moment Capacity

($a>$ slab depth $)$
$\phi M_{n}=\phi\left[0.85 f_{c}^{\prime} h_{f}\left(b_{e}-b_{w}\right)\left(d-h_{f} / 2\right)+0.85 f_{c}^{\prime} a b_{w}(d-a / 2)\right]$
where
$h_{f}=$ slab depth and
$b_{w}=$ web width.

Columns

$$
\begin{aligned}
& \phi P_{n}>P_{u} \\
& P_{n}=0.8 P_{o} \quad \text { (tied) } \\
& P_{n}=0.85 P_{o} \quad \text { (spiral) } \\
& P_{o}=0.85 f_{c}^{\prime} A_{\text {concrete }}+f_{y} A_{s} \\
& A_{\text {concrete }}=A_{g}-A_{s}
\end{aligned}
$$

Reinforcement Ratio

$$
\begin{aligned}
& \rho_{g}=A_{s} / A_{g} \\
& 0.01 \leq \rho_{g} \leq 0.08
\end{aligned}
$$

STRUCTURAL STEEL DESIGN

Load Combinations	
ASD	LRFD
D	$1.4 D$
$D+L$	$1.2 D+1.6 L$
$D=$ Dead load	
$L=$ Live load due to equipment and occupancy	

Tension Members

DEFINITIONS

$A_{e}=$ effective net area,
$A_{g}=$ gross area,
$A_{n}=$ net area,
$b=$ width of member,
$d=$ nominal diameter plus $1 / 16$ inch,
$F_{y}=$ specified minimum yield stress,
$F_{t}=$ allowable stress,
$F_{u}=$ specified minimum ultimate stress,
$g=$ transverse center to center spacing between fastener holes; gage lined distance
$L=$ length of connection in direction of loading
$P_{n}=$ nominal axial strength,
$s=$ longitudinal distance between hole centers, pitch,
$t=$ thickness of member,
$\begin{aligned} t & =\text { thickness of member, } \\ U & =\text { reduction coefficient, } \\ \bar{x} & =\text { connection eccentricity }\end{aligned}=1-\left(\frac{\bar{x}}{L}\right) \leq 0.9$
$\phi_{t}=$ resistance factor for tension.

ASD/LRFD
$A_{e}=U A_{n}$ for bolted connection
$A_{e}=U A_{g}$ for welded connection

Larger values of U are permitted to be used when justified by tests or other rational criteria.
(a) When the tension load is transmitted only by bolts or rivets:
$\mathrm{A}_{\mathrm{e}}=\mathrm{UA} \mathrm{A}_{\mathrm{n}}$
(b) When the tension member is transmitted only by longitudinal welds to other than a plate member or by longitudal welds in combination with transverse welds:
$\mathrm{A}_{\mathrm{e}}=\mathrm{UA}_{\mathrm{g}}$
$A_{g}=$ gross area of member, in 2
(c) When the tension load is transmitted only by transverse welds:
$A_{e}=$ area of directly connected elements, in ${ }^{2}$
(d) When the tension load is transmitted to a plate by longitudinal welds along both edges at the end of the plate for $\ell>\mathrm{w}$:
$\mathrm{A}_{\mathrm{e}}=$ area of plate, in^{2}
For $\ell \geq 2 \mathrm{w} \quad \mathrm{U}=1.00$
For $2 \mathrm{w} \geq \ell \geq 1.5 \mathrm{w} \quad \mathrm{U}=0.87$
For $1.5 \mathrm{w} \geq \ell \geq \mathrm{w} \quad \mathrm{U}=0.75$
Where
$\ell=$ length of weld, in
$\mathrm{w}=$ plate width (distance between welds), in

Design Strength

ASD	LRFD	
$F_{t}=0.6 F_{y}$	$\phi_{t} P_{n}=0.9 F_{y} A_{g}$	for yielding
$F_{t}=0.5 F_{u}$	$\phi_{t} P_{n}=0.75 F_{u} A_{e}$	for fracture

$A_{g}=b t$
$A_{n}=b_{n} t$
$b_{n}=b-\Sigma d+\Sigma s^{2} /(4 g)$

Member Connections (Block Shear)

ASD

$$
\begin{aligned}
& F_{v}=0.3 F_{u} \text {, for net shear area } \\
& F_{t}=0.5 F_{u} \text {, for net tension area }
\end{aligned}
$$

LRFD

The block shear rupture design strength ϕR_{n} shall be determined as follows:
(a) When $F_{u} A_{n t} \geq 0.6 F_{u} A_{n v}$,

$$
\phi R_{n}=\phi\left[0.6 F_{y} A_{g v}+F_{u} A_{n t}\right]
$$

(b) When $0.6 F_{u} A_{n v}>F_{u} A_{n t}$,

$$
\phi R_{n}=\phi\left[0.6 F_{y} A_{n v}+F_{y} A_{g t}\right]
$$

where
$R_{n}=$ nominal strength,
$A_{g v}=$ gross area in shear,
$A_{g t}=$ gross area in tension,
$A_{n v}=$ net area in shear, and
$A_{n t}=$ net area in tension.

Beams

ASD Beams
$F_{y}=$ Yield Stress
$F_{a}=$ Allowable Stress
$S=$ Section Modulus

Flexure Design

$$
\frac{M}{S}=F_{a}
$$

For Compact Sections

$$
F_{a}=0.66 F_{y}
$$

For Non-Compact Sections

$$
F_{a}=0.60 F_{y}
$$

Design for Shear

for buildings

$$
F_{v}=0.40 F_{y}
$$

AISC
for bridges

$$
F_{v}=0.33 F_{y}
$$

AASHTO

LRFD Beams

Yielding

The flexural design strength of beams, determined by the limit state of yielding is $\phi_{b} \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& \phi_{\mathrm{b}}=0.90 \\
& M_{n}=M_{p}
\end{aligned}
$$

where:
$M_{p}=$ plastic moment, kip-in (= $F_{y} Z<1.5 M_{y}$ for homogeneous sections),
$M_{y}=$ moment corresponding to onset of yielding at the extreme fiber from an elastic stress distribution ($=F_{y} S$ for homogeneous section and $F_{y f} S$ for hybrid sections), kip-in
$\mathrm{Z}=$ plastic section modulus

Design Shear Strength

The design shear strength of unstiffened webs, with
$h / t_{w}<260$, is $\phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}$ where
$\phi_{\mathrm{v}}=0.90$
$V_{n}=$ nominal shear strength defined as follows:
for

$$
h / t_{w} \leq 418 / \sqrt{F_{y w}}
$$

$$
V_{n}=0.6 F_{y w} A_{w}
$$

for $418 / \sqrt{F_{y w}}<h / t_{w} \leq 523 / \sqrt{F_{y w}}$

$$
V_{n}=0.6 F_{y w} A_{w}\left(418 / \sqrt{F_{y w}}\right) /\left(h / t_{w}\right)
$$

for $523 / \sqrt{F_{y w}}<h / t_{w} \leq 260$

$$
V_{n}=\left(132,000 A_{w}\right) /\left(h / t_{w}\right)^{2}
$$

where:
$h \quad$ Clear distance between flanges less the fillet or corner radius for rolled shapes; and for built-up sections, the distance between adjacent lines of fasteners or the clear distance between the flanges when welds are used, in.
$t_{w}=$ web thickness, in.
$F_{y w}=$ specified minimum yield stress of web, ksi
$V_{n}=$ nominal shear strength, kips
$A_{w}=$ area of web clear of flanges, in 2

Compression Members

COLUMNS

LRFD

$$
\begin{array}{ll}
\text { For } & \frac{P_{u}}{\phi P_{n}} \geq 0.2 \\
& \frac{P_{u}}{\phi P_{n}}+\frac{8}{9}\left(\frac{M_{u x}}{\phi M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right) \leq 1.0 \\
\text { For } & \frac{P_{u}}{\phi P_{n}}<0.2 \\
& \frac{P_{u}}{2 \phi P_{n}}+\left(\frac{M_{u x}}{\phi M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right) \leq 1.0
\end{array}
$$

where:
$P_{u}=$ required compressive strength, i.e. the total factored compressive force, kips
$\phi P_{n}=$ design compressive stress, $\phi_{c} P_{n}$, kips
$\phi \quad=$ resistance factor for compression, $\phi_{c}=0.85$
$P_{n} \quad=$ nominal compressive strength, kips
$M_{u}=$ required flexural strength including second-order effects, kip-in or kip-ft
$\phi_{b} M_{n}=$ design flexural strength, kip-in or kip-ft
$\phi_{b}=$ resistance factor for flexure $=0.90$
$M_{n}=$ nominal flexural strength kip-in or kip-ft

Long Columns - Euler's Formula

$P_{\text {cr }}=\pi^{2} E I /(\mathrm{k} \ell)^{2}$, where
$P_{\text {cr }}=$ critical axial loading,
$k=$ a constant determined by column end restraints, and
$\ell \quad=$ unbraced column length.
Substitute $\quad I=r^{2} A$:
$P_{\text {cr }} / A=\pi^{2} E\left\lceil[k(\ell / r)]^{2}\right.$, where
$r=$ radius of gyration and
$\ell \mid r=$ slenderness ratio for the column

Commonly Used \boldsymbol{k} Values For Columns		
Theoretical Value	Design Value	End Conditions
0.5	0.65	both ends fixed
0.7	0.80	one end fixed and other end pinned
1.0	1.00	both ends pinned
2.0	2.10	one end fixed and other end free
Use of these values is cautioned! These are approximations, and enginering judgment should prevail over their use.		

Slenderness Ratio
$\mathrm{SR}=\mathrm{kl} / \mathrm{r}$, where
$1=$ length of the compression member,
$r=$ radius of gyration of the member, and
$\mathrm{k}=$ effective length factor for the member. Values for this factor can be found in the table on page 97.

$$
C_{c}=\sqrt{2 \pi^{2} E / F_{y}}
$$

ASD
If $\mathrm{SR}>\mathrm{C}_{\mathrm{c}}$

$$
\begin{aligned}
& F_{a}=\frac{12 \pi^{2} E}{23(k l / r)^{2}} \\
& \text { If } S R \leq C_{c} \\
& F_{a}=\frac{\left[1-\frac{(k l / r)^{2}}{2 C_{c}^{2}}\right] F_{y}}{\frac{5}{3}+\frac{3(k l / r)}{8 C_{c}}-\frac{(k l / r)^{3}}{8 C_{c}^{3}}}
\end{aligned}
$$

where
$\mathrm{F}_{\mathrm{a}}=$ allowable axial compressive stress

ENVIRONMENTAL ENGINEERING

Equivalent Weights	Molecular Weight	\# Equiv mole	Equivalent Weight
	60.008	2	30.004
CO_{2}	44.009	2	22.004
$\mathrm{Ca}(\mathrm{OH})_{2}$	74.092	2	37.046
CaCO	100.086	2	50.043
$\mathbf{C a (\mathbf { H C O } _ { 3 }) _ { 2 }}$	$\mathbf{1 6 2 . 1 1 0}$	$\mathbf{2}$	$\mathbf{8 1 . 0 5 5}$
CaSO_{4}	136.104	2	68.070
Ca^{2+}	40.078	2	20.039
H^{+}	1.008	1	1.008
$\mathrm{HCO}_{3}{ }^{-}$	61.016	1	61.016
${\mathbf{M g}\left(\mathbf{H C O}_{3}\right)_{2}}^{146.337}$	$\mathbf{2}$	$\mathbf{7 3 . 1 6 8}$	
${\mathrm{Mg}(\mathrm{OH})_{2}}^{\mathrm{MgSO}_{4}}$	58.319	2	29.159
Mg^{2+}	120.367	2	60.184
Na^{+}	24.305	2	12.152
$\mathbf{N a}_{2} \mathbf{C O}_{3}$	22.990	1	22.990
OH^{-}	$\mathbf{1 0 5 . 9 8 8}$	$\mathbf{2}$	$\mathbf{5 2 . 9 9 4}$
$\mathrm{SO}_{4}{ }^{2-}$	17.007	1	17.007

Lime-Soda Softening Equations

Unit Conversion

$50 \mathrm{mg} / \mathrm{L}$ as $\mathrm{C}_{\mathrm{a}} \mathrm{CO}_{3}$ equivalent $=1 \mathrm{meq} / \mathrm{L}$

1. Carbon dioxide removal

$$
\mathrm{CO}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}
$$

2. Calcium carbonate hardness removal

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}
$$

3. Calcium non-carbonate hardness removal

$$
\mathrm{CaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{-2}
$$

4. Magnesium carbonate hardness removal

$$
\begin{gathered}
\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3}(\mathrm{~s}) \quad+ \\
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

5. Magnesium non-carbonate hardness removal

$$
\begin{aligned}
\mathrm{MgSO}_{4} & +\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+ \\
& \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{2-}
\end{aligned}
$$

6. Destruction of excess alkalinity

$$
2 \mathrm{HCO}_{3}^{-}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O}
$$

7. Recarbonation

$$
\mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}
$$

Formula (Definitions)

Approach velocity $=Q / A_{x}$
Hydraulic loading rate $=Q / A$
Hydraulic residence time $=V / Q$
Organic loading rate (volumetric) $=Q S_{o} / V$
Organic loading rate (F:M) $=Q S_{o} /\left(V_{A} X_{A}\right)$
Organic loading rate (surface area) $=Q S_{o} / A_{M}$
Overflow rate $=Q / A$
Recycle ratio $=R / Q$
Sludge flow rate: $Q_{s}=\frac{M(100)}{\rho_{s}(\% \text { solids })}$
Solids loading rate $=Q X / A$
Solids residence time $=\frac{V_{A} X_{A}}{Q_{w} X_{w}+Q_{e} X_{e}}$
Weir loading rate $=Q / L$
Steady State Mass Balance for Aeration Basin:

$$
(Q+R) X_{A}=Q_{e} X_{e}+R X_{w}
$$

in which
$A=$ surface area of unit,
$A_{M}=$ surface area of media in fixed-film reactor,
$A_{x}=$ cross-sectional area of channel,
$L=$ linear length of weir,
M = sludge production rate (dry weight basis),
Q = flow rate,
$Q_{e}=$ effluent flow rate,
$Q_{w}=$ waste sludge flow rate,
$Q_{s}=$ sludge volumetric flow rate,
$\rho_{s}=$ wet sludge density,
$R=$ recycle flow rate,
$S_{o}=$ influent substrate concentration (typically BOD),
$X=$ suspended solids concentration,
$X_{A}=$ mixed liquor suspended solids (MLSS),
$X_{e}=$ effluent suspended solids concentration,
$X_{w}=$ waste sludge suspended solids concentration,
$V=$ tank volume, and
$V_{A}=$ aeration basin volume.

Units Conversion

Mass $(\mathrm{lb} /$ day $)=$ Flow $(\mathrm{MGD}) \times$ Concentration $(\mathrm{mg} / \mathrm{L})$
$\times 8.34(\mathrm{lb} / \mathrm{MGal}) /(\mathrm{mg} / \mathrm{L})$

BOD Exertion

$$
y_{t}=L\left(1-e^{-k t}\right), \text { where }
$$

$k=$ reaction rate constant (base e, days $^{-1}$),
$L=$ ultimate BOD (mg/L),
$t=$ time (days), and
$y_{t}=$ the amount of BOD exerted at time $t(\mathrm{mg} / \mathrm{L})$.

HYDROLOGY

NRCS (SCS) Rainfall-Runoff

$$
\begin{aligned}
& Q=\frac{(P-0.2 S)^{2}}{P+0.8 S} \\
& S=\frac{1,000}{C N}-10 \\
& C N=\frac{1,000}{S+10}
\end{aligned}
$$

$P=$ precipitation (inches),
$S=$ maximum basin retention (inches), and
$Q=$ runoff (inches).

Rational Formula

$Q=C I A$, where
$A=$ watershed area (acres),
$C=$ runoff coefficient,
$I=$ rainfall intensity (in/hr), and
$Q=$ discharge (cfs).

DARCY'S EQUATION

$Q=-K A(d H / d x)$, where
$Q=$ Discharge rate $\left(\mathrm{ft}^{3} / \mathrm{s}\right.$ or $\left.\mathrm{m}^{3} / \mathrm{s}\right)$
$K=$ Hydraulic conductivity (ft / s or m / s)
$H=$ Hydraulic head (ft or m)
$A=$ Cross-sectional area of flow (ft^{2} or m^{2})

SEWAGE FLOW RATIO CURVES

HYDRAULIC-ELEMENTS GRAPH FOR CIRCULAR SEWERS

Values of: $\frac{f}{f_{f}}$ and $\frac{\mathrm{n}}{\mathrm{n}_{f}}$

Open Channel Flow

Specific Energy

$$
E=\alpha \frac{V^{2}}{2 g}+y=\frac{\alpha Q^{2}}{2 g A^{2}}+y
$$

where $\mathrm{E}=$ specific energy
$\mathrm{Q}=$ discharge
$\mathrm{V}=$ velocity
$y=$ depth of flow
A = cross-sectional area of flow
$\alpha=$ kinetic energy correction factor, usually 1.0

Critical Depth $=$ that depth in a channel at minimum specific energy

$$
\frac{Q^{2}}{g}=\frac{A^{3}}{T}
$$

For rectangular channels

$$
y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3}
$$

where: $\mathrm{y}_{\mathrm{c}}=$ critical depth

$$
\begin{aligned}
& \mathrm{q}=\text { unit discharge }=\mathrm{Q} / \mathrm{B} \\
& \mathrm{~B}=\text { channel width } \\
& \mathrm{g}=\text { acceleration due to gravity }
\end{aligned}
$$

Froude Number = ratio of inertial forces to gravity forces

$$
\boldsymbol{F}=\frac{V}{\sqrt{g y}}
$$

where Q and A are as defined above,

$$
\begin{aligned}
& \mathrm{g}=\text { acceleration due to gravity, and } \\
& \mathrm{T}=\text { width of the water surface }
\end{aligned}
$$

Specific Energy Diagram

$E=\frac{V^{2}}{2 g}+y$
Alternate depths - depths with the same specific energy
Uniform Flow - a flow condition where depth and velocity do not change along a channel
Manning's Equation

$$
Q=\frac{K}{n} A R^{2 / 3} S^{1 / 2}
$$

$\mathrm{Q}=$ discharge $\left(\mathrm{m}^{3} / \mathrm{s}\right.$ or $\left.\mathrm{ft}^{3} / \mathrm{s}\right)$
$\mathrm{K}=1.486$ for USCS units, 1.0 for SI units
$\mathrm{A}=$ Cross-sectional area of flow $\left(\mathrm{m}^{2}\right.$ or $\left.\mathrm{ft}^{2}\right)$
$\mathrm{R}=$ hydraulic radius $=\mathrm{A} / \mathrm{P}(\mathrm{m}$ or ft$)$
$\mathrm{P}=$ wetted perimeter (m or ft)
$\mathrm{S}=$ slope of hydraulic surface (m / m or $\mathrm{ft} / \mathrm{ft}$)
$\mathrm{n}=$ Manning's roughness coefficient
Normal depth - the uniform flow depth

$$
A R^{2 / 3}=\frac{Q n}{K S^{1 / 2}}
$$

Weir formulas

Fully submerged with no side restrictions

$$
\mathrm{Q}=\mathrm{CLH}^{3 / 2}
$$

V-Notch

$$
\mathrm{Q}=\mathrm{CH}^{5 / 2}
$$

where $\mathrm{Q}=$ discharge, cfs or $\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{C}=3.33$ for submerged rectangular weir, USCS units
C $=1.84$ for submerged rectangular weir, SI units
$\mathrm{C}=2.54$ for $90^{\circ} \mathrm{V}$-notch weir, USCS units
$\mathrm{C}=1.40$ for $90^{\circ} \mathrm{V}$-notch weir, SI units
$\mathrm{L}=$ Weir length, ft or m
$\mathrm{H}=$ head (depth of discharge over weir) ft or m

TRANSPORTATION

Stopping Sight Distance

$$
S=\frac{v^{2}}{2 g(f \pm G)}+T v, \quad \text { where }
$$

$S=$ stopping sight distance
$v=$ initial speed
$g=$ acceleration of gravity,
$f=$ coefficient of friction between tires and roadway,
$G=$ grade of road (\%/100), and
$T=$ driver reaction time.

Sight Distance Related to Curve Length

a. Crest - Vertical Curve:

$$
\begin{array}{ll}
L=\frac{A S^{2}}{100\left(\sqrt{2 h_{1}}+\sqrt{2 h_{2}}\right)^{2}} & \text { for } S<L \\
L=2 S-\frac{200\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}}{A} & \text { for } S>L
\end{array}
$$

where
$L=$ length of vertical curve (feet),
$A=$ algebraic difference in grades (\%),
$S=$ sight distance (stopping or passing, feet),
$h_{1}=$ height of drivers' eyes above the roadway surface (feet), and
$h_{2}=$ height of object above the roadway surface (feet).
When $h_{1}=3.50$ feet and $h_{2}=0.5$ feet,

$$
\begin{array}{ll}
L=\frac{A S^{2}}{1,329} & \text { for } S<L \\
L=2 S-\frac{1,329}{A} & \text { for } S>L
\end{array}
$$

b. Sag - Vertical Curve (standard headlight criteria):

$$
\begin{array}{ll}
L=\frac{A S^{2}}{400+3.5 S} & \text { for } S<L \\
L=2 S-\frac{400+3.5 S}{A} & \text { for } S>L
\end{array}
$$

c. Riding comfort (centrifugal acceleration) on sag vertical curve:
where

$$
L=\frac{A V^{2}}{46.5}
$$

$L=$ length of vertical curve (feet) and
$V=$ design speed (mph).
d. Adequate sight distance under an overhead structure to see an object beyond a sag vertical curve:

$$
\begin{array}{ll}
L=\frac{A S^{2}}{800}\left(C-\frac{h_{1}+h_{2}}{2}\right)^{-1} & \text { for } S<L \\
L=2 S-\frac{800}{A}\left(C-\frac{h_{1}+h_{2}}{2}\right) & \text { for } S>L
\end{array}
$$

where
$C=$ vertical clearance for overhead structure (underpass) located within 200 feet (60 m) of the midpoint of the curve.
e. Horizontal Curve (to see around an obstruction):

$$
M=\frac{5,729 \cdot 58}{D}\left(1-\cos \frac{S D}{200}\right),
$$

where
$D=$ degree of curve,
$M=$ middle ordinate (feet), and
$S=$ stopping sight distance (feet).

Superelevation of Horizontal Curves

a. Highways:

$$
e+f=\frac{v^{2}}{g R}
$$

where
$e=$ superelevation,
$f=$ side-friction factor,
$g=$ acceleration of gravity,
$v=$ speed of vehicle, and
$R=$ radius of curve (minimum).
b. Railroads:

$$
E=\frac{G v^{2}}{g R}
$$

where
$g=$ acceleration of gravity,
$v=$ speed of train,
$E=$ equilibrium elevation of the outer rail,
$G=$ effective gage (center-to-center of rails), and
$R=$ radius of curve.

Spiral Transitions to Horizontal Curves

a. Highways:

$$
L_{s}=1.6 \frac{V^{3}}{R}
$$

b. Railroads:

$$
\begin{aligned}
L_{s} & =62 E \\
E & =0.0007 V^{2} D
\end{aligned}
$$

where
$D=$ degree of curve,
$E=$ equilibrium elevation of outer rail (inches),
$L_{s}=$ length of spiral (feet),
$R=$ radius of curve (feet), and
$V=\operatorname{speed}(\mathrm{mph})$.

Metric Stopping Sight Distance

$$
S=0.278 T V+\frac{V^{2}}{254(f \pm G)}
$$

$S=$ stopping sight distance (m)
$V=$ initial speed km/hr
$G=$ grade of road (\%/100)
$T=$ driver reaction time, seconds
$f=$ coefficient of friction between tires and roadway

Highway Superelevation (metric)

$$
\frac{e}{100}+f=\frac{V^{2}}{127 R}
$$

$e=$ rate of roadway superelevation in \%
$f=$ side friction factor
$R=$ radius of curve (minimum), m
$V=$ vehicle speed, $\mathrm{km} / \mathrm{hr}$

Highway Spiral Curve Length (metric)

$$
L_{s}=\frac{0.0702 V^{3}}{R C}
$$

$L_{s}=$ length of spiral, m
$V=$ vehicle speed, $\mathrm{km} / \mathrm{hr}$
$R=$ curve radius, m
$C=1$ to 3 , often used as 1

Sight Distance, Crest Vertical Curves (metric)

$$
\begin{array}{ll}
\text { For } S<L & L=\frac{A S^{2}}{100\left(\sqrt{2 h_{1}}+\sqrt{2 h_{2}}\right)^{2}} \\
\text { For } S>L & L=2 S-\frac{200\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}}{A}
\end{array}
$$

$$
L=\text { length of vertical curve, }(\mathrm{m})
$$

$$
S=\text { sight distance, (stopping or passing, m) }
$$

$$
A=\text { algebraic difference in grades } \%
$$

$$
h_{1}=\text { height of driver's eye above roadway surface (m), }
$$

$$
h_{2}=\text { height of object above roadway surface }(\mathrm{m}) \text {. }
$$

Sight Distance, Sag Vertical Curves (metric)

$$
L=\frac{A S^{2}}{120+3.5 S} \quad \text { For } S<L
$$

$$
L=2 S-\left(\frac{120+3.5 S}{A}\right) \text { For } S>L
$$

Both 1° upward headlight illumination

Highway Sag Vertical Curve Criterion for Driver or Passenger Comfort (metric)
 $$
L=\frac{A V^{2}}{395}
$$
 $$
\mathrm{V}=\text { vehicle speed, } \mathrm{km} / \mathrm{hr}
$$

Modified Davis Equation - Railroads

$$
R=0.6+20 / W+0.01 V+K V^{2} /(W N)
$$

where
$K=$ air resistance coefficient,
$N=$ number of axles,
$R=$ level tangent resistance $[\mathrm{lb} /($ ton of car weight $)]$,
$V=$ train or car speed (mph), and
$W=$ average load per axle (tons).
Standard values of K
$K=0.0935$, containers on flat car,
$K=0.16$, trucks or trailers on flat car, and $K=0.07$, all other standard rail units.

Railroad curve resistance is 0.8 lb per ton of car weight per degree of curvature.

$$
T E=375(\mathrm{HP}) e / V
$$

where
$e=$ efficiency of diesel-electric drive system (0.82 to 0.93)
$\mathrm{HP}=$ rated horsepower of a diesel-electric locomotive unit,
$T E=$ tractive effort (lb force of a locomotive unit), and $V=$ locomotive speed (mph).

AREA Vertical Curve Criteria for Track Profile

Maximum Rate of Change of Gradient in Percent Grade per Station		
Line Rating	In Sags	On Crests
High-speed Main Line Tracks	0.05	0.10
Secondary or Branch Line Tracks	0.10	0.20

Transportation Models

Optimization models and methods, including queueing theory, can be found in the INDUSTRIAL ENGINEERING section.
Traffic Flow Relationships ($q=k v$)

AIRPORT LAYOUT AND DESIGN

1. Cross-wind component of 12 mph maximum for aircraft of $12,500 \mathrm{lb}$ or less weight and 15 mph maximum for aircraft weighing more than $12,500 \mathrm{lb}$.
2. Cross-wind components maximum shall not be exceeded more than 5% of the time at an airport having a single runway.
3. A cross-wind runway is to be provided if a single runway does not provide 95% wind coverage with less than the maximum cross-wind component.

LONGITUDINAL GRADE DESIGN CRITERIA FOR RUNWAYS

Item	Transport Airports	Utility Airports
Maximum longitudinal grade (percent)	1.5	2.0
Maximum grade change such as A or B (percent)	1.5	2.0
Maximum grade, first and last quarter of runway (percent)	----	
Distance between points of intersection for vertical curves $(D$ feet)	$1,000(A+B)^{a}$	$250(A+B)^{a}$
Lengths of vertical curve $\left(L_{1}\right.$ or L_{2}, feet $/ 1$ percent grade change)	1,000	300
${ }^{a}$ Use absolute values of A and B (percent).		

AUTOMOBILE PAVEMENT DESIGN

AASHTO Structural Number Equation
$S N=a_{1} D_{1}+a_{2} \mathrm{D}_{2}+\ldots+a_{n} D_{n}$, where
$S N=$ structural number for the pavement
$a_{i} \quad$ layer coefficient and $\mathrm{D}_{\mathrm{i}}=$ thickness of layer (inches).

EARTHWORK FORMULAS

Average End Area Formula, $\mathrm{V}=\mathrm{L}\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) / 2$,
Prismoidal Formula, $V=L\left(A_{1}+4 A_{m}+A_{2}\right) / 6$, where $A_{m}=$ area of mid-section
Pyramid or Cone, $\mathrm{V}=\mathrm{h}($ Area of Base $) / 3$,

AREA FORMULAS

Area by Coordinates: Area $=\left[\mathrm{X}_{\mathrm{A}}\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{N}}\right)+\mathrm{X}_{\mathrm{B}}\left(\mathrm{Y}_{\mathrm{C}}-\mathrm{Y}_{\mathrm{A}}\right)+\mathrm{X}_{\mathrm{C}}\left(\mathrm{Y}_{\mathrm{D}}-\mathrm{Y}_{\mathrm{B}}\right)+\ldots+\mathrm{X}_{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{A}}-\mathrm{Y}_{\mathrm{N}-1}\right)\right] / 2$,
Trapezoidal Rule: Area $=w\left(\frac{h_{1}+h_{n}}{2}+h_{2}+h_{3}+h_{4}+\ldots+h_{n-1}\right) \quad w=$ common interval,

Simpson's $1 / 3$ Rule: $\operatorname{Area}=w\left[h_{1}+2\left(\sum_{k=2,4, \ldots}^{n-2} h_{k}\right)+4\left(\sum_{k=1,3, \ldots}^{n-1} h_{k}\right)+h_{n}\right] / 3 \quad n=$ odd number of measurements,

CONSTRUCTION

Construction project scheduling and analysis questions may be based on either activity-on-node method or on activity-on-arrow method.

CPM PRECEDENCE RELATIONSHIPS (ACTIVITY ON NODE)

Start-to-start: start of B depends on the start of A

Finish-to-finish: finish of B depends on the finish of A

Finish-to-start: start of B depends on the finish of A

VERTICAL CURVE FORMULAS

$L \quad=$ Length of Curve (horizontal)
$P V C=$ Point of Vertical Curvature
PVI $=$ Point of Vertical Intersection
PVT $=$ Point of Vertical Tangency
$g_{1}=$ Grade of Back Tangent
$x=$ Horizontal Distance from PVC (or point of tangency) to Point on Curve
$g_{2}=$ Grade of Forward Tangent
$a=$ Parabola Constant
$y=$ Tangent Offset
$E=$ Tangent Offset at PVI
$r=$ Rate of Change of Grade
$x_{m}=$ Horizontal Distance to Min/Max Elevation on Curve $=\quad-\frac{g_{1}}{2 a}=\frac{g_{1} L}{g_{1}-g_{2}}$
Tangent Elevation $=Y_{\mathrm{PVC}}+g_{1} x \quad$ and $\quad=Y_{\mathrm{PVI}}+g_{2}(x-L / 2)$
Curve Elevation $=Y_{\mathrm{PVC}}+g_{1} x+a x^{2}=Y_{\mathrm{PVC}}+g_{1} x+\left[\left(g_{2}-g_{1}\right) /(2 L)\right] x^{2}$

$$
\begin{array}{ll}
y=a x^{2} ; & a=\frac{g_{2}-g_{1}}{2 L} \\
E=a\left(\frac{L}{2}\right)^{2} ; & r=\frac{g_{2}-g_{1}}{L}
\end{array}
$$

HORIZONTAL CURVE FORMULAS

D = Degree of Curve, Arc Definition
$1^{\circ}=1$ Degree of Curve
$2^{\circ}=2$ Degrees of Curve
P.C. $=$ Point of Curve (also called B.C.)
P.T. = Point of Tangent (also called E.C.)
P.I. = Point of Intersection

I $\quad=$ Intersection Angle (also called Δ)
Angle between two tangents
L = Length of Curve,
from P.C. to P.T.
$\mathrm{T}=$ Tangent Distance
E = External Distance
$\mathrm{R}=$ Radius
L.C. = Length of Long Chord

M = Length of Middle Ordinate
c = Length of Sub-Chord

d = Angle of Sub-Chord

$$
\begin{aligned}
& R=\frac{L . C .}{2 \sin (I / 2)} ; \quad T=R \tan (I / 2)=\frac{L . C .}{2 \cos (I / 2)} \\
& R=\frac{5729.58}{D} ; \quad L=R I \frac{\pi}{180}=\frac{I}{D} 100 \\
& M=R[1-\cos (I / 2)] \\
& \frac{R}{E+R}=\cos (I / 2) ; \frac{R-M}{R}=\cos (I / 2) \\
& c=2 R \sin (d / 2) ; \\
& E=R\left[\frac{1}{\cos (I / 2)}-1\right]
\end{aligned}
$$

ELECTRICAL AND COMPUTER ENGINEERING

ELECTROMAGNETIC DYNAMIC FIELDS

The integral and point form of Maxwell's equations are

$$
\begin{aligned}
& \oint \mathbf{E} \cdot d \mathbf{l}=-\iint_{S}(\partial \mathbf{B} / \partial t) \cdot d \mathbf{S} \\
& \oint \mathbf{H} \cdot d \mathbf{l}=I_{\mathrm{enc}}+\iint_{S}(\partial \mathbf{D} / \partial t) \cdot d \mathbf{S} \\
& \oiint_{S_{V}} \mathbf{D} \cdot d \mathbf{S}=\iiint_{V} \rho d v \\
& \oiint_{S_{V}} \mathbf{B} \cdot d \mathbf{S}=0 \\
& \nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t \\
& \nabla \times \mathbf{H}=\mathbf{J}+\partial \mathbf{D} / \partial t \\
& \nabla \cdot \mathbf{D}=\rho \\
& \nabla \cdot \mathbf{B}=0
\end{aligned}
$$

The sinusoidal wave equation in \mathbf{E} for an isotropic homogeneous medium is given by

$$
\nabla^{2} \mathbf{E}=-\omega^{2} \mu \varepsilon \mathbf{E}
$$

The $E M$ energy flow of a volume V enclosed by the surface S_{V} can be expressed in terms of the Poynting's Theorem

$$
\begin{aligned}
-\oiint_{S_{V}}(\mathbf{E} \times \mathbf{H}) \cdot d \mathbf{S} & =\iiint_{V} \mathbf{J} \cdot \mathbf{E} d v \\
& \left.+\partial / \partial t \iiint \int_{V}\left(\varepsilon E^{2} / 2+\mu H^{2} / 2\right) d v\right\}
\end{aligned}
$$

where the left-side term represents the energy flow per unit time or power flow into the volume V, whereas the $\mathbf{J} \cdot \mathbf{E}$ represents the loss in V and the last term represents the rate of change of the energy stored in the \mathbf{E} and \mathbf{H} fields.

LOSSLESS TRANSMISSION LINES

The wavelength, λ, of a sinusoidal signal is defined as the distance the signal will travel in one period.

$$
\lambda=\frac{U}{f}
$$

where U is the velocity of propagation and f is the frequency of the sinusoid.
The characteristic impedance, Z_{o}, of a transmission line is the input impedance of an infinite length of the line and is given by

$$
Z_{0}=\sqrt{L / C}
$$

where L and C are the per unit length inductance and capacitance of the line.
The reflection coefficient at the load is defined as

$$
\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

and the standing wave ratio SWR is

$$
\begin{gathered}
\operatorname{SWR}=\frac{1+|\Gamma|}{1-|\Gamma|} \\
\beta=\text { Propagation constant }=\frac{2 \pi}{\lambda}
\end{gathered}
$$

For sinusoidal voltages and currents:

Voltage across the transmission line:

$$
\boldsymbol{V}(d)=V^{+} e^{j \beta d}+V^{-} e^{-j \beta d}
$$

Current along the transmission line:

$$
\boldsymbol{I}(d)=\boldsymbol{I}^{+} e^{j \beta d}+\boldsymbol{I}^{-} e^{-j \beta d}
$$

where $\boldsymbol{I}^{+}=\boldsymbol{V}^{+} / Z_{0}$ and $\boldsymbol{I}^{-}=-\boldsymbol{V}^{-} / Z_{0}$
Input impedance at d

$$
Z_{i n}(d)=Z_{0} \frac{Z_{L}+j Z_{0} \tan (\beta d)}{Z_{0}+j Z_{L} \tan (\beta d)}
$$

AC MACHINES

The synchronous speed n_{s} for AC motors is given by

$$
n_{s}=120 f / p, \text { where }
$$

$f=$ the line voltage frequency in Hz and $p=$ the number of poles.
The slip for an induction motor is

$$
\text { slip }=\left(n_{s}-n\right) / n_{s} \text {, where }
$$

$n=$ the rotational speed (rpm).

DC MACHINES

The armature circuit of a DC machine is approximated by a series connection of the armature resistance R_{a}, the armature inductance L_{a}, and a dependent voltage source of value

$$
V_{a}=K_{a} n \phi \quad \text { volts }
$$

where
$K_{a}=$ constant depending on the design,
$n=$ is armature speed in rpm,
$\phi=$ the magnetic flux generated by the field
The field circuit is approximated by the field resistance R_{f}, in series with the field inductance L_{f}. Neglecting saturation, the magnetic flux generated by the field current I_{f} is

$$
\phi=K_{f} I_{f} \quad \text { webers }
$$

The mechanical power generated by the armature is

$$
P_{m}=V_{a} I_{a} \quad \text { watts }
$$

where I_{a} is the armature current. The mechanical torque produced is

$$
T_{m}=(60 / 2 \pi) K_{a} \phi I_{a} \text { newton-meters. }
$$

BALANCED THREE-PHASE SYSTEMS

The three-phase line-phase relations are

$$
\begin{array}{ll}
I_{L}=\sqrt{3} I_{p} & \text { (for delta) } \\
V_{L}=\sqrt{3} V_{p} & \text { (for wye) }
\end{array}
$$

where subscripts L / p denote line/phase respectively. Threephase complex power is defined by

$$
\begin{aligned}
& \boldsymbol{S}=P+j Q \\
& \boldsymbol{S}=\sqrt{3} V_{L} I_{L}\left(\cos \theta_{p}+\mathrm{j} \sin \theta_{p}\right)
\end{aligned}
$$

where
S = total complex volt-amperes,
$P=$ real power, watts
$Q=$ reactive power, VARs
$\theta_{p}=$ power factor angle of each phase.

CONVOLUTION

Continuous-time convolution:
$V(t)=x(t) \cdot y(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau$
Discrete-time convolution:
$V[n]=x[n] \cdot y[n]=\sum_{k=-\infty}^{\infty} x[k] y[n-k]$

DIGITAL SIGNAL PROCESSING

A discrete-time, linear, time-invariant (DTLTI) system with a single input $x[n]$ and a single output $y[n]$ can be described by a linear difference equation with constant coefficients of the form

$$
y[n]+\sum_{i=1}^{k} b_{i} y[n-i]=\sum_{i=0}^{l} a_{i} x[n-i]
$$

If all initial conditions are zero, taking a z-transform yields a transfer function

$$
\begin{aligned}
& \text { function } \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{l} a_{i} z^{k-i}}{z^{k}+\sum_{i=1}^{k} b_{i} z^{k-i}}
\end{aligned}
$$

Two common discrete inputs are the unit-step function $u[n]$ and the unit impulse function $\delta[n]$, where

$$
u[n]=\left\{\begin{array}{cc}
0 & n<0 \\
1 & n \geq 0
\end{array}\right\} \quad \text { and } \quad \delta[n]=\left\{\begin{array}{cc}
1 & n=0 \\
0 & n \neq 0
\end{array}\right\}
$$

The impulse response $h[n]$ is the response of a discrete-time system to $x[n]=\delta[n]$.
A finite impulse response (FIR) filter is one in which the impulse response $h[n]$ is limited to a finite number of points:

$$
h[n]=\sum_{i=0}^{k} a_{i} \delta[n-i]
$$

The corresponding transfer function is given by

$$
H(z)=\sum_{i=0}^{k} a_{i} z^{-i}
$$

where k is the order of the filter.

An infinite impulse response (IIR) filter is one in which the impulse response $h[n]$ has an infinite number of points:

$$
h[n]=\sum_{i=0}^{\infty} a_{i} \delta[n-i]
$$

COMMUNICATION THEORY CONCEPTS

Spectral characterization of communication signals can be represented by mathematical transform theory. An amplitude modulated (AM) signal form is

$$
v(t)=A_{c}[1+m(t)] \cos \omega_{c} t, \text { where }
$$

$A_{c}=$ carrier signal amplitude.
If the modulation baseband signal $m(t)$ is of sinusoidal form with frequency ω_{m} or

$$
m(t)=m \cos \omega_{m} t
$$

then m is the index of modulation with $m>1$ implying overmodulation. An angle modulated signal is given by

$$
v(t)=A \cos \left[\omega_{c} t+\phi(t)\right]
$$

where the angle modulation $\phi(t)$ is a function of the baseband signal. The angle modulation form

$$
\phi(t)=k_{p} m(t)
$$

is termed phase modulation since angle variations are proportional to the baseband signal $m_{i}(t)$. Alternately

$$
\phi(t)=k_{f} \int_{-\infty}^{t} m(\tau) d \tau
$$

is termed frequency modulation. Therefore, the instantaneous phase associated with $v(t)$ is defined by

$$
\phi_{i}(t)=\omega_{c} t+k_{f} \int_{-\infty}^{t} m(\tau) d \tau
$$

from which the instantaneous frequency

$$
\omega_{i}=\frac{d \phi_{i}(t)}{d t}=\omega_{c}+k_{f} m(t)=\omega_{c}+\Delta \omega(t)
$$

where the frequency deviation is proportional to the baseband signal or

$$
\Delta \omega(t)=k_{f} m(t)
$$

These fundamental concepts form the basis of analog communication theory. Alternately, sampling theory, conversion, and PCM (Pulse Code Modulation) are fundamental concepts of digital communication.

FOURIER SERIES

If $f(t)$ satisfies certain continuity conditions and the relationship for periodicity given by

$$
f(t)=f(t+T) \quad \text { for all } \mathrm{t}
$$

then $f(t)$ can be represented by the trigonometric and complex Fourier series given by

$$
f(t)=A_{o}+\sum_{n=1}^{\infty} A_{n} \cos n \omega_{o} t+\sum_{n=1}^{\infty} B_{n} \sin n \omega_{o} t
$$

and

$$
f(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{j n \omega_{0} t}
$$

where
$\omega_{o}=2 \pi / T$
$A_{o}=(1 / T) \int_{t}^{t+T} f(\tau) d \tau$
$A_{n}=(2 / T) \int_{t}^{t+T} f(\tau) \cos n \omega_{o} \tau d \tau$
$B_{n}=(2 / T) \int_{t}^{t+T} f(\tau) \sin n \omega_{o} \tau d \tau$
$C_{n}=(1 / T) \int_{t}^{t+T} f(\tau) e^{-j n \omega_{o} \tau} d \tau$
Three useful and common Fourier series forms are defined in terms of the following graphs (with $\omega_{o}=2 \pi / T$).
Given:

then

$$
f_{1}(t)=\sum_{\substack{n=1 \\(\mathrm{n} \mathrm{odd})}}^{\infty}(-1)^{(n-1) / 2}\left(4 V_{o} / n \pi\right) \cos \left(n \omega_{o} t\right)
$$

Given:

then

$$
\begin{aligned}
& f_{2}(t)=\frac{V_{o} \tau}{T}+\frac{2 V_{o} \tau}{T} \sum_{n=1}^{\infty} \frac{\sin (n \pi \tau / T)}{(n \pi \tau / T)} \cos \left(n \omega_{o} t\right) \\
& f_{2}(t)=\frac{V_{o} \tau}{T} \sum_{n=-\infty}^{\infty} \frac{\sin (n \pi \tau / T)}{(n \pi \tau / T)} e^{j n \omega_{o} t}
\end{aligned}
$$

Given:

$$
f_{\mathrm{s}}(\mathrm{t})=" \mathrm{a} \text { train of impulses with weights } \mathrm{A} "
$$

then

$$
\begin{aligned}
& f_{3}(t)=\sum_{n=-\infty}^{\infty} A \delta(t-n T) \\
& f_{3}(t)=(A / T)+(2 A / T) \sum_{n=1}^{\infty} \cos \left(n \omega_{o} t\right) \\
& f_{3}(t)=(A / T) \sum_{n=-\infty}^{\infty} e^{j n \omega_{o} t}
\end{aligned}
$$

SOLID-STATE ELECTRONICS AND DEVICES

Conductivity of a semiconductor material:

$$
\sigma=q\left(n \mu_{n}+p \mu_{p}\right), \text { where }
$$

$\mu_{n} \equiv$ electron mobility,
$\mu_{p} \equiv$ hole mobility,
$n \equiv$ electron concentration,
$p \equiv$ hole concentration, and
$q \equiv$ charge on an electron.
Doped material:

$$
\begin{aligned}
& p \text {-type material; } p_{p} \approx N_{a} \\
& n \text {-type material; } n_{n} \approx N_{d}
\end{aligned}
$$

Carrier concentrations at equilibrium

$$
(p)(n)=n_{i}^{2} \text { where }
$$

$n_{i} \equiv$ intrinsic concentration.
Built-in potential (contact potential) of a $p-n$ junction:

$$
V_{0}=\frac{k T}{q} \ln \frac{N_{a} N_{d}}{n_{i}^{2}}, \quad \text { where }
$$

Thermal voltage

$$
V_{T}=\frac{k T}{q}
$$

$N_{a}=$ acceptor concentration,
$N_{d}=$ donor concentration,
$T=$ temperature (K), and
$k=$ Boltzmann's Constant $=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Capacitance of abrupt $p-n$ junction diode

$$
C(v)=C_{o} / \sqrt{1-V / V_{b i}}
$$

where
$C_{o}=$ junction capacitance at $V=0$,
$V=$ potential of anode with respect to cathode
$V_{b i}=$ junction contact potential
Resistance of a diffused layer is

$$
R=R_{\square}(L / W), \text { where }
$$

$R_{\square}=$ sheet resistance $=\rho / d$ in ohms per square
$\rho=$ resistivity,
$d=$ thickness,
$L=$ length of diffusion, and
$W=$ width of diffusion.

TABULATED CHARACTERISTICS FOR:

Diodes

Bipolar Junction Transistor (BJT)
N-Channel JFET and MOSFET

Enhancement MOSFETs

follow on pages 111-112.

DIODES			
Device and Schematic Symbol	Ideal $I-V$ P Relationship Ap I	Piecewise-Linear Approximation of The I - V Relationship	Mathematical I - V Relationship
(Junction Diode)		$\underset{(0.5 \text { to } 0.6) \mathrm{V}}{\overbrace{\text { breakdown voltage }}^{\mathrm{v}_{\mathrm{D}}}}{ }_{\substack{\mathrm{i}_{\mathrm{D}}}}^{\substack{i_{D} \approx I_{s} \\ I_{s}=\text { sat } \\ \eta=\text { em } \\ V_{T}=\text { th }}}$	Shockley Equation $\left[e^{\left(v_{D} / \eta V_{T}\right)}-1\right]$, where ration current ission coefficient, typically 1 for Si rmal voltage $=\frac{\mathrm{kT}}{\mathrm{q}}$
(Zener Diode)			above.
NPN Bipolar Junction Transistor (BJT)			
Schematic Symbol	Mathematical Relationships	Large-Signal (DC) Equivalent Circuit	Low-Frequency Small-Signal (AC) Equivalent Circuit
NPN - Transistor	$\begin{aligned} & i_{E}=i_{B}+i_{C} \\ & i_{C}=\beta i_{B} \\ & i_{C}=\alpha i_{E} \\ & \alpha=\beta /(\beta+1) \\ & i_{C} \approx I_{S} e^{\left(V_{B E} / V_{T}\right)} \\ & I_{S}= \text { emitter saturation } \\ & \quad \begin{array}{l} \text { current } \end{array} \\ & V_{T}= \text { thermal voltage } \end{aligned}$ Note: These relationships are valid in the active mode of operation.	Active Region: base emitter junction forward biased; base collector junction reverse biased	Low Frequency: $\begin{aligned} & g_{m} \approx I_{C Q} / V_{T} \\ & r_{\pi} \approx \beta / g_{m}, \\ & r_{o}=\left[\frac{\partial v_{C E}}{\partial i_{c}}\right]_{Q_{\text {viide }}} \approx \frac{V_{A}}{I_{C Q}} \end{aligned}$ where $I_{C Q}=$ dc collector current at the $\mathrm{Q}_{\text {point }}$ $V_{A}=$ Early voltage
PNP - Transistor	Same as for NPN with current directions and voltage polarities reversed.	Cutoff Region: both junctions reversed biased	Same as for NPN.
		Same as NPN with current directions and voltage polarities reversed	

N-Channel Junction Field Effect Transistors (JFETs) and Depletion MOSFETs (Low and Medium Frequency)		
Schematic Symbol	Mathematical Relationships	Small-Signal (AC) Equivalent Circuit
JFET	$\begin{aligned} & \text { Cutoff Region: } v_{G S}<V_{p} \\ & i_{D}=0 \end{aligned}$	$g_{m}=\frac{2 \sqrt{I_{D S S} I_{D}}}{\left\|V_{p}\right\|}$ in saturation region
	Triode Region: $v_{G S}>V_{p}$ and $v_{G D}>V_{p}$ $i_{D}=\left(I_{D S S} / V_{p}^{2}\right)\left[2 v_{D S}\left(v_{G S}-V_{p}\right)-v_{D S}{ }^{2}\right]$ Saturation Region: $v_{G S}>V_{p}$ and $v_{G D}<V_{p}$ $i_{D}=I_{D S S}\left(1-v_{G S} / V_{p}\right)^{2}$, where $I_{D S S}=$ drain current with $v_{G S}=0$ (in the	
Depletion MOSFET	$\begin{aligned} & \text { saturation region) } \\ & =K V_{p}{ }^{2} \\ K & =\text { conductivity factor } \\ V_{p} & =\text { pinch-off voltage } \end{aligned}$	$r_{d}=\left\|\frac{\partial v_{d s}}{\partial i_{d}}\right\|_{\varrho_{\text {point }}}$

Enhancement MOSFET (Low and Medium Frequency)		
Schematic Symbol	Mathematical Relationships	Small-Signal (AC) Equivalent Circuit
	$\begin{aligned} & \text { Cutoff Region: } v_{G S}<V_{t} \\ & i_{D}=0 \\ & \text { Triode Region: } v_{G S}>V_{t} \text { and } v_{G D}>V_{t} \\ & i_{D}=K\left[2 v_{D S}\left(v_{G S}-V_{t}\right)-v_{D S}{ }^{2}\right] \\ & \\ & \text { Saturation Region: } v_{G S}>V_{t} \text { and } v_{G D}<V_{t} \\ & i_{D}=K\left(v_{G S}-V_{t}\right)^{2}, \text { where } \\ & K=\text { conductivity factor } \\ & V_{t}=\text { threshold voltage } \end{aligned}$	$g_{m}=2 K\left(v_{G S}-V_{t}\right)$ in saturation region where $r_{d}=\left\|\frac{\partial v_{d s}}{\partial i_{d}}\right\|_{Q_{\text {point }}}$
	Same as for N -channel with current directions and voltage polarities reversed.	Same as for N -channel.

NUMBER SYSTEMS AND CODES

An unsigned number of base- r has a decimal equivalent D defined by

$$
D=\sum_{k=0}^{n} a_{k} r^{k}+\sum_{i=1}^{m} a_{i} r^{-i}, \quad \text { where }
$$

$a_{k}=$ the $(k+1)$ digit to the left of the radix point and $a_{i}=$ the i th digit to the right of the radix point.
Signed numbers of base- r are often represented by the radix complement operation. If M is an N-digit value of base- r, the radix complement $R(M)$ is defined by

$$
R(M)=r^{N}-M
$$

The 2's complement of an N-bit binary integer can be written

$$
2 \text { 's Complement }(M)=2^{\mathrm{N}}-\mathrm{M}
$$

This operation is equivalent to taking the 1's complement (inverting each bit of M) and adding one.
The following table contains equivalent codes for a four-bit binary value.

Binary Base-2	Decimal Base-10	Hexa- decimal Base-16	Octal Base-8	BCD Code	Gray Code
0000	0	0	0	0	0000
0001	1	1	1	1	0001
0010	2	2	2	2	0011
0011	3	3	3	3	0010
0100	4	4	4	4	0110
0101	5	5	5	5	0111
0110	6	6	6	6	0101
0111	7	7	7	7	0100
1000	8	8	10	8	1100
1001	9	9	11	9	1101
1010	10	A	12	---	1111
1011	11	B	13	---	1110
1100	12	C	14	---	1010
1101	13	D	15	---	1011
1110	14	E	16	---	1001
1111	15	F	17	---	1000

LOGIC OPERATIONS AND BOOLEAN ALGEBRA
Three basic logic operations are the "AND (•)," "OR (+)," and "Exclusive-OR \oplus " functions. The definition of each function, its logic symbol, and its Boolean expression are given in the following table.

Function			${ }_{B}^{A}-7>\times \mathrm{xOR}$
Inputs			
$A B$	$C=A \cdot B$	$C=A+B$	$C=A \oplus B$
00	0	0	0
01	0	1	1
10	0	1	1
11	1	1	0

As commonly used, A AND B is often written $A B$ or $A \cdot B$.
The not operator inverts the sense of a binary value
($0 \rightarrow 1,1 \rightarrow 0$)
NOT OPERATOR

DeMorgan's Theorem

first theorem: $\overline{A+B}=\bar{A} \cdot \bar{B}$
second theorem: $\overline{A \cdot B}=\bar{A}+\bar{B}$
These theorems define the NAND gate and the NOR gate. Logic symbols for these gates are shown below.
NAND Gates: $\overline{A \cdot B}=\bar{A}+\bar{B}$

NOR Gates: $\overline{A+B}=\bar{A} \cdot \bar{B}$

FLIP-FLOPS

A flip-flop is a device whose output can be placed in one of two states, 0 or 1 . The flip-flop output is synchronized with a clock (CLK) signal. Q_{n} represents the value of the flip-flop output before CLK is applied, and Q_{n+1} represents the output after CLK has been applied. Three basic flip-flops are described below.

$S R$	Q_{n+1}
00	Q_{n} no change
01	0
10	1
11	x invalid

$J K$		Q_{n+1}	D	Q_{n+1}
00	Q_{n} no change			
01	0			
10	$\frac{1}{Q_{n}}$	toggle		
11	Q_{n}	0		

Composite Flip-Flop State Transition						
$\boldsymbol{Q}_{\boldsymbol{n}}$	$\boldsymbol{Q}_{\boldsymbol{n}+\boldsymbol{1}}$	\boldsymbol{S}	\boldsymbol{R}	\boldsymbol{J}	\boldsymbol{K}	\boldsymbol{D}
0	0	0	x	0	x	0
0	1	1	0	1	x	1
1	0	0	1	x	1	0
1	1	x	0	x	0	1

Switching Function Terminology

Minterm - A product term which contains an occurrence of every variable in the function.

Maxterm - A sum term which contains an occurrence of every variable in the function.

Implicant - A Boolean algebra term, either in sum or product form, which contains one or more minterms or maxterms of a function.

Prime Implicant - An implicant which is not entirely contained in any other implicant.

Essential Prime Implicant - A prime implicant which contains a minterm or maxterm which is not contained in any other prime implicant.

A function represented as a sum of minterms only is said to be in canonical sum of products (SOP) form. A function represented as a product of maxterms only is said to be in canonical product of sums (POS) form. A function in canonical SOP form is often represented as a minterm list, while a function in canonical POS form is often represented as a maxterm list.
A Karnaugh Map (K-Map) is a graphical technique used to represent a truth table. Each square in the K-Map represents one minterm, and the squares of the K-Map are arranged so that the adjacent squares differ by a change in exactly one variable. A four-variable K-Map with its corresponding minterms is shown below. K-Maps are used to simplify switching functions by visually identifying all essential prime implicants

Four-variable Karnaugh Map

INDUSTRIAL ENGINEERING

LINEAR PROGRAMMING

The general linear programming (LP) problem is:

$$
\text { Maximize } Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

Subject to:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \ldots \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m},
\end{aligned}
$$

where $\quad x_{1}, \ldots, x_{n} \geq 0$
An LP problem is frequently reformulated by inserting slack and surplus variables. Although these variables usually have zero costs (depending on the application), they can have nonzero cost coefficients in the objective function. A slack variable is used with a "less than" inequality and transforms it into an equality. For example, the inequality $5 x_{1}+3 x_{2}+2 x_{2} \leq 5$ could be changed to $5 x_{1}+3 x_{2}+2 x_{3}+s_{1}=5$ if s_{1} were chosen as a slack variable. The inequality $3 x_{1}+x_{2}-4 x_{3} \geq 10$ might be transformed into $3 x_{1}+x_{2}-4 x_{3}-s_{2}=10$ by the addition of the surplus variable s_{2}. Computer printouts of the results of processing and LP usually include values for all slack and surplus variables, the dual prices, and the reduced cost for each variable.

DUAL LINEAR PROGRAM

Associated with the general linear programming problem is another problem called the dual linear programming problem. If we take the previous problem and call it the primal problem, then in matrix form the primal and dual problems are respectively:

Primal

Dual
Maximize $Z=\boldsymbol{c x}$
Minimize $W=\boldsymbol{b}^{T} \boldsymbol{y}$
Subject to: $\boldsymbol{A x} \leq \boldsymbol{b}$
Subject to: $\boldsymbol{y} \boldsymbol{A} \geq \boldsymbol{c}$

$$
x \geq 0 \quad y \geq 0
$$

If \boldsymbol{A} is a matrix of size $[m \times n]$, then \boldsymbol{y} is an $[1 \times m]$ vector, \boldsymbol{c} is an $[1 \times n]$ vector, and \boldsymbol{b} is an $[m \times 1]$ vector.

STATISTICAL QUALITY CONTROL

Average and Range Charts

\boldsymbol{n}	$\boldsymbol{A}_{\mathbf{2}}$	$\boldsymbol{D}_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$
2	1.880	0	3.268
3	1.023	0	2.574
4	0.729	0	2.282
5	0.577	0	2.114
6	0.483	0	2.004
7	0.419	0.076	1.924
8	0.373	0.136	1.864
9	0.337	0.184	1.816
10	0.308	0.223	1.777

$X=$ an individual observation
$n=$ the sample size of a group
$k=$ the number of groups
$R=$ (range) the difference between the largest and smallest observations in a sample of size n.

$$
\begin{aligned}
& \bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \\
& \overline{\bar{X}}=\frac{\bar{X}_{1}+\bar{X}_{2}+\ldots+\bar{X}_{k}}{k} \\
& \bar{R}=\frac{R_{1}+R_{2}+\ldots+R_{k}}{k}
\end{aligned}
$$

The R Chart equations are:

$$
\begin{aligned}
& C L_{R}=\bar{R} \\
& U C L_{R}=D_{4} \bar{R} \\
& L C L_{R}=D_{3} \bar{R}
\end{aligned}
$$

The \bar{X} Chart equations are:

$$
\begin{aligned}
& C L_{X}=\overline{\bar{X}} \\
& U C L_{X}=\overline{\bar{X}}+A_{2} \bar{R} \\
& L C L_{X}=\overline{\bar{X}}-A_{2} \bar{R}
\end{aligned}
$$

Standard Deviation Charts

\boldsymbol{n}	$\boldsymbol{A}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\boldsymbol{4}}$
2	2.659	0	3.267
3	1.954	0	2.568
4	1.628	0	2.266
5	1.427	0	2.089
6	1.287	0.030	1.970
7	1.182	0.119	1.882
8	1.099	0.185	1.815
9	1.032	0.239	1.761
10	0.975	0.284	1.716

$$
U C L_{X}=\overline{\bar{X}}+A_{3} \bar{S}
$$

$$
C L_{X}=\overline{\bar{X}}
$$

$$
L C L_{X}=\overline{\bar{X}}-A_{3} \bar{S}
$$

$$
U C L_{S}=B_{4} \bar{S}
$$

$$
C L_{s}=\bar{S}
$$

$$
L C L_{s}=B_{3} \bar{S}
$$

Approximations

The following table and equations may be used to generate initial approximations of the items indicated.

\boldsymbol{n}	$\boldsymbol{c}_{\boldsymbol{4}}$	$\boldsymbol{d}_{\boldsymbol{2}}$	$\boldsymbol{d}_{\boldsymbol{3}}$
2	0.7979	1.128	0.853
3	0.8862	1.693	0.888
4	0.9213	2.059	0.880
5	0.9400	2.326	0.864
6	0.9515	2.534	0.848
7	0.9594	2.704	0.833
8	0.9650	2.847	0.820
9	0.9693	2.970	0.808
10	0.9727	3.078	0.797

$$
\begin{aligned}
& \hat{\sigma}=\bar{R} / d_{2} \\
& \hat{\sigma}=\bar{S} / c_{4} \\
& \sigma_{R}=d_{3} \hat{\sigma} \\
& \sigma_{s}=\hat{\sigma} \sqrt{1-c_{4}^{2}}, \text { where }
\end{aligned}
$$

$\hat{\boldsymbol{\sigma}}=$ an estimate of σ,
$\sigma_{R}=$ an estimate of the standard deviation of the ranges of the samples, and
$\sigma_{S}=$ an estimate of the standard deviation of the standard deviations.

Tests for Out of Control

1. A single point falls outside the (three sigma) control limits.
2. Two out of three successive points fall on the same side of and more than two sigma units from the center line.
3. Four out of five successive points fall on the same side of and more than one sigma unit from the center line.
4. Eight successive points fall on the same side of the center line.

QUEUEING MODELS

Definitions

$P_{n}=$ probability of n units in system,
$L=$ expected number of units in the system,
$L_{q}=$ expected number of units in the queue,
$W=$ waiting time in system,
$W_{q}=$ waiting time in queue,
$\lambda=$ mean arrival rate (constant),
$\mu=$ mean service rate (constant),
$\rho=$ server utilization factor, and
$s=$ number of servers.

Kendall notation for describing a queueing system:
$A / B / s / M$
$A=$ the arrival process,
$B=$ the service time distribution,
$s=$ the number of servers, and
$M=$ the total number of customers including those in service.

Fundamental Relationships

$$
\begin{aligned}
L & =\lambda W \\
L_{q} & =\lambda W_{q} \\
W & =W_{q}+1 / \mu \\
\rho & =\lambda /(s \mu)
\end{aligned}
$$

Single Server Models ($s=1$)
Poisson Input - Exponential Service Time: $M=\infty$

$$
\begin{aligned}
& P_{0}=1-\lambda / \mu=1-\rho \\
& P_{n}=(1-\rho) \rho^{n}=P_{0} \rho^{n} \\
& L=\rho /(1-\rho)=\lambda /(\mu-\lambda) \\
& L_{q}=\lambda^{2} /[\mu(\mu-\lambda)] \\
& W=1 /[\mu(1-\rho)]=1 /(\mu-\lambda) \\
& W_{q}=W-1 / \mu=\lambda /[\mu(\mu-\lambda)]
\end{aligned}
$$

Finite queue: $M<\infty$

$$
\begin{aligned}
& P_{0}=(1-\rho) /\left(1-\rho^{M+1}\right) \\
& P_{n}=\left[(1-\rho) /\left(1-\rho^{M+1}\right)\right] \rho^{n} \\
& L=\rho /(1-\rho)-(M+1) \rho^{M+1} /\left(1-\rho^{M+1}\right) \\
& L_{q}=L-\left(1-P_{0}\right)
\end{aligned}
$$

Poisson Input - Arbitrary Service Time
Variance σ^{2} is known. For constant service time,
$\sigma^{2}=0$.

$$
\begin{aligned}
& P_{0}=1-\rho \\
& L_{q}=\left(\lambda^{2} \sigma^{2}+\rho^{2}\right) /[2(1-\rho)] \\
& L=\rho+L_{q} \\
& W_{q}=L_{q} / \lambda \\
& W=W_{q}+1 / \mu
\end{aligned}
$$

Poisson Input - Erlang Service Times, $\sigma^{2}=1 /\left(k \mu^{2}\right)$

$$
\begin{aligned}
L_{q} & =[(1+k) /(2 k)]\left[\left(\lambda^{2}\right) /(\mu(\mu-\lambda))\right] \\
& =\left[\lambda^{2} /\left(k \mu^{2}\right)+\rho^{2}\right] /[2(1-\rho)] \\
W_{q} & =[(1+k) /(2 k)]\{\lambda /[\mu(\mu-\lambda)]\} \\
W & =W_{q}+1 / \mu
\end{aligned}
$$

Multiple Server Model (s > 1)

Poisson Input - Exponential Service Times

$$
\begin{aligned}
P_{0} & =\left\{\sum_{n=0}^{s-1} \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!}+\frac{\left(\frac{\lambda}{\mu}\right)^{s}}{s!}\left[\frac{1}{1-\frac{\lambda}{s \mu}}\right]\right\}^{-1} \\
& =1 /\left[\sum_{n=0}^{s-1} \frac{(s \rho)^{n}}{n!}+\frac{(s \rho)^{s}}{s!(1-\rho)}\right] \\
L_{q} & =\frac{P_{0}\left(\frac{\lambda}{\mu}\right)^{s} \rho}{s!(1-\rho)^{2}} \\
& =\frac{P_{0} s^{s} \rho^{s+1}}{s!(1-\rho)^{2}} \\
P_{n} & =P_{0}(\lambda / \mu)^{n} / n! \\
P_{n} & =P_{0}(\lambda / \mu)^{n} /\left(s!s^{n-s}\right) \quad n \geq s \\
W_{q} & =L_{q} \lambda \\
W & =W_{q}+1 / \mu \\
L & =L_{q}+\lambda / \mu
\end{aligned}
$$

Calculations for P_{0} and L_{q} can be time consuming; however, the following table gives formulae for 1,2 , and 3 servers.

\boldsymbol{s}	$\boldsymbol{P}_{\mathbf{0}}$	$\boldsymbol{L}_{\boldsymbol{q}}$
1	$1-\rho$	$\rho^{2} /(1-\rho)$
2	$(1-\rho) /(1+\rho)$	$2 \rho^{3} /\left(1-\rho^{2}\right)$
3	$\frac{2(1-\rho)}{2+4 \rho+3 \rho^{2}}$	$\frac{9 \rho^{4}}{2+2 \rho-\rho^{2}-3 \rho^{3}}$

MOVING AVERAGE

$$
\hat{d}_{t}=\frac{\sum_{i=1}^{n} d_{t-i}}{n}
$$

where,
$\hat{d}_{t}=$ forecasted demand for period t,
$d_{t-i}=$ actual demand for i th period preceding t, and
$n=$ number of time periods to include in the moving average.

EXPONENTIALLY WEIGHTED MOVING AVERAGE

$$
\hat{d}_{t}=\alpha d_{t-1}+(1-\alpha) \hat{d}_{t-1}
$$

where
$\hat{d}_{t}=$ forecasted demand for t
$\alpha=$ smoothing constant

LINEAR REGRESSION AND DESIGN OF EXPERIMENTS

Least Squares

$$
y=\hat{a}+\hat{b} x \text {, where }
$$

y-intercept: $\hat{a}=\bar{y}-\hat{b} \bar{x}$
and slope : $\hat{b}=S S_{x y} / S S_{x x}$
$S_{x y}=\sum_{i=1}^{n} x_{i} y_{i}-(1 / n)\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)$
$S_{x x}=\sum_{i=1}^{n} x_{i}^{2}-(1 / n)\left(\sum_{i=1}^{n} x_{i}\right)^{2}$
$n=$ sample size
$\bar{y}=(1 / n)\left(\sum_{i=1}^{n} y_{i}\right)$
$\bar{x}=(1 / n)\left(\sum_{i=1}^{n} x_{i}\right)$

Standard Error of Estimate

$$
\begin{aligned}
& S_{e}^{2}=\frac{S_{x x} S_{y y}-S_{x y}^{2}}{S_{x x}(n-2)}=\text { MSE, where } \\
& S_{y y}=\sum_{i=1}^{n} y_{i}^{2}-(1 / n)\left(\sum_{i=1}^{n} y_{i}\right)^{2}
\end{aligned}
$$

Confidence Interval for a

$$
\hat{a} \pm t_{\alpha / 2, n-2} \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right) M S E}
$$

Confidence Interval for b

$$
\hat{b} \pm t_{\alpha / 2, n-2} \sqrt{\frac{M S E}{S_{x x}}}
$$

Sample Correlation Coefficient

$$
r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}
$$

$2^{\mathbf{N}}$ FACTORIAL EXPERIMENTS

Factors: $\quad X_{1}, X_{2}, \ldots, X_{n}$
Levels of each factor: 1,2
$r=$ number of observations for each experimental condition (treatment),
$E_{i}=$ estimate of the effect of factor $X_{i}, i=1,2, \ldots, n$,
$E_{i j}=$ estimate of the effect of the interaction between factors X_{i} and X_{j},
$\bar{Y}_{i k}=$ average response value for all $\mathrm{r} 2^{\mathrm{n}-1}$ observations having
X_{i} set at level $k, k=1,2$, and
$\bar{Y}_{i j}^{k m}=$ average response value for all $\mathrm{r} \mathrm{r}^{\mathrm{n}-2}$ observations having
X_{i} set at level $k, k=1,2$, and X_{j} set at level $m, m=1,2$.

$$
\begin{aligned}
& E_{i}=\bar{Y}_{i 2}-\bar{Y}_{i 1} \\
& E_{i j}=\frac{\left(\bar{Y}_{i j}^{22}-\bar{Y}_{i j}^{21}\right)-\left(\bar{Y}_{i j}^{12}-\bar{Y}_{i j}^{11}\right)}{2}
\end{aligned}
$$

ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

Given independent random samples of size n from k populations, then:

$$
\begin{aligned}
& \begin{array}{l}
\sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-\bar{x}\right)^{2} \\
\quad=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-\bar{x}\right)^{2}+n \sum_{i=1}^{k}\left(\bar{x}_{i}-\bar{x}\right)^{2} \quad \text { or } \\
S S_{\text {Total }}
\end{array}=S S_{\text {Error }}+S S_{\text {Treatments }}
\end{aligned}
$$

Let T be the grand total of all $k n$ observations and T_{i} be the total of the n observations of the i th sample. See One-Way ANOVA table on page 121.

$$
\begin{aligned}
& C=T^{2} /(k n) \\
& S S_{\text {Total }}=\sum_{i=1}^{k} \sum_{j=1}^{n} x_{i j}^{2}-C \\
& S S_{\text {Treatments }}=\sum_{i=1}^{k}\left(T_{i}^{2} / n\right)-C \\
& S S_{\text {Error }}=S S_{\text {Total }}-S S_{\text {Treatments }}
\end{aligned}
$$

LEARNING CURVES

The time to do the repetition N of a task is given by

$$
T_{N}=K N^{s} \text {, where }
$$

$K=$ constant and
$s=\ln ($ learning rate, as a decimal)/n 2.
If N units are to be produced, the average time per unit is given by

$$
T_{\text {avg }}=\frac{K}{N(1+s)}\left[(N+0.5)^{(1+s)}-0.5^{(1+s)}\right]
$$

INVENTORY MODELS

For instantaneous replenishment (with constant demand rate, known holding and ordering costs, and an infinite stockout cost), the economic order quantity is given by

$$
E O Q=\sqrt{\frac{2 A D}{h}}, \quad \text { where }
$$

$A=$ cost to place one order,
$D=$ number of units used per year, and
$h=$ holding cost per item and per unit
Under the same conditions as above with a finite replenishment rate, the economic manufacturing quantity is given by

$$
E M Q=\sqrt{\frac{2 A D}{h(1-D / R)}}, \quad \text { where }
$$

ERGONOMICS

NIOSH Formula

Action Limit

$$
=90(6 / H)\left(1-0.01|V-30|(0.7+3 / D)\left(1-F / F_{\max }\right)\right.
$$

where
H = horizontal distance of the hand from the body's center of gravity at the beginning of the lift,
$V=$ vertical distance from the hands to the floor at the beginning of the lift,
$D=$ distance that the object is lifted vertically, and
$F=$ average number of lifts per minute.

Biomechanics of the Human Body

BASIC EQUATIONS

$$
\begin{aligned}
& H_{x}+F_{x}=0 \\
& H_{y}+F_{y}=0 \\
& H_{z}+F_{z}=0 \\
& T_{H x z}+T_{F x z}=0 \\
& T_{H y z}+T_{F y z}=0 \\
& T_{H x y}+T_{F x y}=0
\end{aligned}
$$

The coefficient of friction μ and the angle α at which the floor is inclined determine the equations at the foot.

$$
F_{x}=\mu F_{z}
$$

With the slope angle α

$$
F_{x}=\mu F_{z} \cos \alpha
$$

Of course, when motion must be considered, dynamic conditions come into play according to Newton's Second Law. Force transmitted with the hands is counteracted at the foot. Further, the body must also react with internal forces at all points between the hand and the foot.
$R=$ the replenishment rate.

FACILITY DESIGN

Equipment Requirements

$P_{i j}=$ desired production rate for product i on machine j, measured in pieces per production period,
$T_{i j}=$ production time for product i on machine j, measured in hours per piece,
$C_{i j}=$ number of hours in the production period available for the production of product i on machine j,
$M_{j}=$ number of machines of type j required per production period, and
$n=$ number of products.
Therefore, M_{j} can be expressed as

$$
M_{j}=\sum_{i=1}^{n} \frac{P_{i j} T_{i j}}{C_{i j}}
$$

People Requirements

$$
A_{j}=\sum_{i=1}^{n} \frac{P_{i j} T_{i j}}{C_{i j}}, \quad \text { where }
$$

$A_{j}=$ number of operators required for assembly operation j,
$P_{i j}=$ desired production rate for product i and assembly operation j (pieces per day),
$T_{i j}=$ standard time to perform operation j on product i (minutes per piece),
$C_{i j}=$ number of minutes available per day for assembly operation j on product i, and
$n=$ number of products.

Plant Location

The following is one formulation of a discrete plant location problem.
Minimize

$$
z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} y_{i j}+\sum_{j=1}^{n} f_{j} x_{j}
$$

subject to

$$
\begin{aligned}
& \sum_{i=1}^{m} y_{i j} \leq m x_{j}, \quad j=1, \ldots, n \\
& \sum_{j=1}^{n} y_{i j}=1, \quad j=1, \ldots, m
\end{aligned}
$$

$$
y_{i j} \geq 0 \text {, for all } i, j
$$

$$
x_{j}=(0,1), \text { for all } j
$$

where
$m=$ number of customers,
$n=$ number of possible plant sites,
$y_{i j}=$ fraction or portion of the demand of customer i which is satisfied by a plant located at site $j ; i=1, \ldots, m ; j=1$, \ldots, n,
$x_{j}=1$, if a plant is located at site j,
$x_{j}=0$, otherwise,
$c_{i j}=$ cost of supplying the entire demand of customer i from a plant located at site j, and
$f_{j}=$ fixed cost resulting from locating a plant at site j.

MATERIAL HANDLING

Distances between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{1}, y_{1}\right)$ under different metrics:

Euclidean:

$$
D=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Rectilinear (or Manhattan):

$$
D=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

Chebyshev (simultaneous x and y movement):

$$
D=\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)
$$

FACILITY LAYOUT

Line Balancing

$$
\begin{aligned}
N_{\min } & =\left(O R \times \sum_{i} t_{i} / O T\right) \\
& =\text { Theoretical minimum number of stations } \\
\text { Idle Time/Station } & =C T-S T \\
\text { Idle Time/Cycle } & =\Sigma(C T-S T)
\end{aligned}
$$

Percent Idle Time $=\frac{\text { Idle Time } / \text { Cycle }}{N_{\text {actual }} \times C T} \times 100$
where
$C T=$ cycle time (time between units),
$O T=$ operating time/period,
$O R=$ output rate/period,
$S T=$ station time (time to complete task at each station),
$t_{i}=$ individual task times, and
$N=$ number of stations.

Job Sequencing

Two Work Centers - Johnson's Rule

1. Select the job with the shortest time, from the list of jobs, and its time at each work center.
2. If the shortest job time is the time at the first work center, schedule it first, otherwise schedule it last. Break ties arbitrarily.
3. Eliminate that job from consideration.
4. Repeat 1 , 2, and 3 until all jobs have been scheduled.

CRITICAL PATH METHOD (CPM)

$d_{i j}=$ duration of activity (i, j),
$C P=$ critical path (longest path),
$T=$ duration of project, and
$T=\sum_{(i, j) \in C P} d_{i j}$

PERT

$\left(a_{i j}, b_{i j}, c_{i j}\right)=$ (optimistic, most likely, pessimistic) durations for activity (i, j),
$\mu_{i j}=$ mean duration of activity (i, j),
$\sigma_{i j}=$ standard deviation of the duration of activity (i, j),
$\mu=$ project mean duration, and
$\sigma=$ standard deviation of project duration.

$$
\begin{aligned}
& \mu_{i j}=\frac{a_{i j}+4 b_{i j}+c_{i j}}{6} \\
& \sigma_{i j}=\frac{c_{i j}-a_{i j}}{6} \\
& \mu=\sum_{(i, j) \subset C P} \mu_{i j} \\
& \sigma^{2}=\sum_{(i, j) \in C P} \sigma_{i j}^{2}
\end{aligned}
$$

MACHINING FORMULAS

Material Removal Rate Formulas

1. Drilling:

$$
M R R=(\pi / 4) D^{2} f N, \text { where }
$$

$D=$ drill diameter,
$f=$ feed rate, and
$N=\operatorname{rpm}$ of the drill.
Power $=M R R \times$ specific power
2. Slab Milling:

Cutting speed is the peripheral speed of the cutter
$V=\pi D N$, where
$D=$ cutter diameter and
$N=$ cutter rpm.
Feed per tooth f is given by

$$
f=v /(N n), \text { where }
$$

$v=$ workpiece speed and
$n=$ number of teeth on the cutter.

$$
t=\left(l+l_{c}\right) / v, \text { where }
$$

$t=$ cutting time,
$l=$ length of workpiece, and
$l_{c}=$ additional length of cutter's travel
$=\sqrt{D d} \quad$ (approximately).
If $l_{c} \ll l$

$$
M R R=l w d / t, \text { where }
$$

$d=$ depth of cut,
$w=\min$ (width of the cut, length of cutter), and cutting time $=t=l / v$.
3. Face Milling:
$M R R=$ width \times depth of cut \times workpiece speed
Cutting time $=\frac{(\text { workpiece length }+ \text { tool clearance })}{\text { workpiece speed }}$

$$
=\left(l+2 l_{c}\right) / V
$$

Feed $($ per tooth $)=V /(N n)$
$l_{c}=$ tool travel necessary to completely clear the workpiece; usually $=$ tool diameter $/ 2$.

Taylor Tool Life Formula

$V T^{n}=C$, where
$V=$ speed in surface feet per minute,
$T=$ time before the tool reaches a certain percentage of possible wear, and
$C, n=$ constants that depend on the material and on the tool.

Work Sampling Formulas

$D=Z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}} \quad$ and $\quad R=Z_{\alpha / 2} \sqrt{\frac{1-p}{p n}}$
$p=$ proportion of observed time in an activity,
$D=$ absolute error,
$R=$ relative error $(R=D / p)$
$n=$ sample size

ONE-WAY ANOVA TABLE

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	\boldsymbol{F}
Between Treatments	$k-1$	$S S_{\text {Treatments }}$	$M S T=\frac{S S_{\text {Treatments }}}{k-1}$	$\frac{M S T}{M S E}$
Error	$k(n-1)$	$S S_{\text {Error }}$	$M S E=\frac{S S_{\text {Error }}}{k(n-1)}$	
Total	$k n-1$	$S S_{\text {Total }}$		

PROBABILITY AND DENSITY FUNCTIONS: MEANS AND VARIANCES

Variable	Equation	Mean	Variance
Binomial Coefficient	$\binom{n}{x}=\frac{n!}{x!(n-x)!}$		
Binomial	$b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$	$n p$	$n p(1-p)$
Hyper Geometric	$h(x ; n, r, N)=\binom{r}{x} \frac{\binom{N-r}{n-x}}{\binom{N}{n}}$	$\frac{n r}{N}$	$\frac{r(N-r) n(N-n)}{N^{2}(N-1)}$
Poisson	$f(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}$	λ	λ
Geometric	$g(x ; p)=p(1-p)^{x-1}$	$1 / p$	$(1-p) / p^{2}$
Negative Binomial	$f(y ; r, p)=\binom{y+r-1}{r-1} p^{r}(1-p)^{y}$	r / p	$r(1-p) / p^{2}$
Multinomial	$f\left(x_{1}, \ldots x_{k}\right)=\frac{n!}{x_{1}!, \ldots, x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}$	$n p_{i}$	$n p_{i}\left(1-p_{i}\right)$
Uniform	$f(x)=1 /(b-a)$	$(a+b) / 2$	$(b-a)^{2} / 12$
Gamma	$f(x)=\frac{x^{\alpha-1} e^{-x / \beta}}{\beta^{\alpha} \Gamma(\alpha)} ; \quad \alpha>0, \beta>0$	$\alpha \beta$	$\alpha \beta^{2}$
Exponential	$f(x)=\frac{1}{\beta} e^{-x / \beta}$	β	β^{2}
Weibull	$f(x)=\frac{\alpha}{\beta} x^{\alpha-1} e^{-x^{\alpha} / \beta}$	$\beta^{1 / \alpha} \Gamma[(\alpha+1) / \alpha]$	$\beta^{2 / \alpha}\left[\Gamma\left(\frac{\alpha+1}{\alpha}\right)-\Gamma^{2}\left(\frac{\alpha+1}{\alpha}\right)\right]$

ERGONOMICS

US Civilian Body Dimensions, Female/Male, for Ages 20 to 60 Years (Centimeters)				
	Percentiles			
	5th	50th	95th	Std. Dev.
HEIGHTS				
Stature (height)	149.5 / 161.8	160.5 / 173.6	171.3 / 184.4	6.6 / 6.9
Eye height	138.3 / 151.1	148.9 / 162.4	159.3 / 172.7	6.4 / 6.6
Shoulder (acromion) height	121.1/132.3	131.1/142.8	141.9 / 152.4	$6.1 / 6.1$
Elbow height	93.6 / 100.0	101.2 / 109.9	108.8 / 119.0	4.6 / 5.8
Knuckle height	64.3 / 69.8	70.2 / 75.4	75.9 / 80.4	3.5 / 3.2
Height, sitting	78.6 / 84.2	85.0 / 90.6	$90.7 / 96.7$	3.5 / 3.7
Eye height, sitting	67.5 / 72.6	73.3 / 78.6	78.5 / 84.4	3.3 / 3.6
Shoulder height, sitting	49.2 / 52.7	55.7 / 59.4	61.7 / 65.8	3.8 / 4.0
Elbow rest height, sitting	18.1 / 19.0	23.3 / 24.3	28.1 / 29.4	$2.9 / 3.0$
Knee height, sitting	45.2 / 49.3	49.8 / 54.3	54.5 / 59.3	$2.7 / 2.9$
Popliteal height, sitting	35.5 / 39.2	39.8 / 44.2	44.3 / 48.8	2.6 / 2.8
Thigh clearance height	10.6/11.4	13.7 / 14.4	17.5 / 17.7	1.8 / 1.7
DEPTHS				
Chest depth	21.4 / 21.4	24.2 / 24.2	29.7 / 27.6	2.5 / 1.9
Elbow-fingertip distance	38.5 / 44.1	42.1 / 47.9	46.0 / 51.4	$2.2 / 2.2$
Buttock-knee distance, sitting	51.8 / 54.0	56.9 / 59.4	62.5 / 64.2	$3.1 / 3.0$
Buttock-popliteal distance, sitting	43.0 / 44.2	48.1 / 49.5	53.5 / 54.8	$3.1 / 3.0$
Forward reach, functional	64.0 / 76.3	71.0 / 82.5	79.0 / 88.3	4.5 / 5.0
BREADTHS				
Elbow-to-elbow breadth	31.5 / 35.0	38.4 / 41.7	49.1 / 50.6	$5.4 / 4.6$
Hip breadth, sitting	$31.2 / 30.8$	$36.4 / 35.4$	$43.7 / 40.6$	$3.7 / 2.8$
HEAD DIMENSIONS				
Head breadth	13.6 / 14.4	14.54 / 15.42	15.5 / 16.4	$0.57 / 0.59$
Head circumference	52.3 / 53.8	54.9 / 56.8	$57.7 / 59.3$	1.63 / 1.68
Interpupillary distance	$5.1 / 5.5$	$5.83 / 6.20$	6.5 / 6.8	0.4 / 0.39
HAND DIMENSIONS				
Hand length	16.4 / 17.6	17.95 / 19.05	19.8 / 20.6	1.04 / 0.93
Breadth, metacarpal	$7.0 \text { / } 8.2$	7.66 / 8.88	$8.4 \text { / } 9.8$	$0.41 / 0.47$
Circumference, metacarpal	$16.9 / 19.9$	$18.36 / 21.55$	$19.9 / 23.5$	$0.89 / 1.09$
Thickness, metacarpal III	$2.5 / 2.4$	2.77 / 2.76	$3.1 / 3.1$	$0.18 / 0.21$
Digit 1				
Breadth, interphalangeal	$1.7 / 2.1$	1.98 / 2.29	$2.1 / 2.5$	0.12 / 0.13
Crotch-tip length	4.7 / 5.1	$5.36 / 5.88$	$6.1 / 6.6$	0.44 / 0.45
Digit 2				
Breadth, distal joint	1.4 / 1.7	1.55 / 1.85	1.7 / 2.0	0.10 / 0.12
Crotch-tip length	$6.1 / 6.8$	6.88 / 7.52	7.8 / 8.2	$0.52 / 0.46$
Digit 3				
Breadth, distal joint	$1.4 \text { / } 1.7$	$1.53 / 1.85$	$1.7 / 2.0$	$0.09 \text { / } 0.12$
Crotch-tip length	$7.0 / 7.8$	7.77 / 8.53	$8.7 / 9.5$	$0.51 / 0.51$
Digit 4				
Breadth, distal joint	1.3 / 1.6	1.42 / 1.70	1.6 / 1.9	$0.09 / 0.11$
Crotch-tip length	$6.5 / 7.4$	7.29 / 7.99	8.2 / 8.9	$0.53 / 0.47$
Digit 5				
Breadth, distal joint	1.2 / 1.4	1.32 / 1.57	1.5/1.8	0.09/0.12
Crotch-tip length	$4.8 / 5.4$	5.44 / 6.08	6.2/6.99	0.44/0.47
FOOT DIMENSIONS				
Foot length	22.3 / 24.8	24.1 / 26.9	26.2 / 29.0	$1.19 \text { / } 1.28$
Foot breadth	$8.1 / 9.0$	8.84 / 9.79	9.7 / 10.7	$0.50 / 0.53$
Lateral malleolus height	$5.8 / 6.2$	6.78 / 7.03	7.8 / 8.0	$0.59 / 0.54$
Weight (kg)	46.2 / 56.2	$61.1 / 74.0$	89.9 / 97.1	13.8 / 12.6

ERGONOMICS - HEARING

The average shifts with age of the threshold of hearing for pure tones of persons with "normal" hearing, using a 25-year-old group as a reference group.

Equivalent sound-level contours used in determining the A-weighted sound level on the basis of an octave-band analysis. The curve at the point of the highest penetration of the noise spectrum reflects the A-weighted sound level.

Estimated average trend curves for net hearing loss at $1,000,2,000$, and $4,000 \mathrm{~Hz}$ after continuous exposure to steady noise. Data are corrected for age, but not for temporary threshold shift. Dotted portions of curves represent extrapolation from available data.

(c)

Exposure time, years

Exposure time, years

Tentative upper limit of effective temperature (ET) for unimpaired mental performance as related to exposure time; data are based on an analysis of 15 studies. Comparative curves of tolerable and marginal physiological limits are also given.

MECHANICAL ENGINEERING

Examinees should also review the material in sections titled HEAT TRANSFER, THERMODYNAMICS, TRANSPORT PHENOMENA, FLUID MECHANICS, and COMPUTERS, MEASUREMENT, AND CONTROLS.

REFRIGERATION AND HVAC

Two-Stage Cycle

The following equations are valid if the mass flows are the same in each stage.

$$
\begin{aligned}
& \mathrm{COP}_{\mathrm{ref}}=\frac{\dot{Q}_{\mathrm{in}}}{\dot{W}_{\mathrm{in}, 1}+\dot{W}_{\mathrm{in}, 2}}=\frac{h_{5}-h_{8}}{h_{2}-h_{1}+h_{6}-h_{5}} \\
& \mathrm{COP}_{\mathrm{HP}}=\frac{\dot{Q}_{\text {out }}}{\dot{W}_{\mathrm{in}, 1}+\dot{W}_{\mathrm{in}, 2}}=\frac{h_{5}-h_{3}}{h_{2}-h_{1}+h_{6}-h_{5}}
\end{aligned}
$$

Air Refrigeration Cycle

$$
\begin{aligned}
& \operatorname{COP}_{\text {ref }}=\frac{h_{1}-h_{4}}{\left(h_{2}-h_{1}\right)-\left(h_{3}-h_{4}\right)} \\
& \operatorname{COP}_{H P}=\frac{h_{2}-h_{3}}{\left(h_{2}-h_{1}\right)-\left(h_{3}-h_{4}\right)}
\end{aligned}
$$

(see also THERMODYNAMICS section)

Cooling and Dehumidification

$$
\begin{aligned}
& \omega \\
& \dot{Q}_{\text {out }}=\dot{m}_{a}\left[\left(h_{2}-h_{1}\right)+h_{f 3}\left(\omega_{1}-\omega_{2}\right)\right] \\
& \dot{m}_{w}=\dot{m}_{a}\left(\omega_{1}-\omega_{2}\right)
\end{aligned}
$$

Heating and Humidification

$\dot{Q}_{\text {in }}=\dot{m}_{a}\left[\left(h_{2}-h_{1}\right)+h_{3}\left(\omega_{2}-\omega_{1}\right)\right]$
$\dot{m}_{w}=\dot{m}_{a}\left(\omega_{2}-\omega_{1}\right)$

Adiabatic Humidification (evaporative cooling)

ω

$h_{2}=h_{1}+h_{3}\left(\omega_{2}-\omega_{1}\right)$
$\dot{m}_{w}=\dot{m}_{a}\left(\omega_{2}-\omega_{1}\right)$
$h_{3}=h_{f} \quad$ at $\quad T_{w b}$

Adiabatic Mixing

$$
\begin{aligned}
\dot{m}_{a 3} & =\dot{m}_{a 1}+\dot{m}_{a 2} \\
h_{3} & =\frac{\dot{m}_{a 1} h_{1}+\dot{m}_{a 2} h_{2}}{\dot{m}_{a 3}} \\
\omega_{3} & =\frac{\dot{m}_{a 1} \omega_{1}+\dot{m}_{a 2} \omega_{2}}{\dot{m}_{a 3}}
\end{aligned}
$$

distance $\quad \overline{13}=\frac{\dot{m}_{a 2}}{\dot{m}_{a 3}} \times$ distance $\overline{12}$ measured on psychrometric chart

Heating Load

(see also HEAT TRANSFER section)

$\dot{Q}=$ heat transfer rate,
$A=$ wall surface area, and
$R^{\prime \prime}=$ thermal resistance.
Overall heat transfer coefficient $=U$

$$
\begin{aligned}
U & =1 / R^{\prime \prime} \\
\dot{Q} & =U A\left(T_{i}-T_{o}\right)
\end{aligned}
$$

Cooling Load

$$
\dot{Q}=U A(\mathrm{CLTD})
$$

CLTD $=$ effective temperature difference
CLTD depends on solar heating rate, wall or roof orientation, color, and time of day.

Infiltration

Air change method

$$
\dot{Q}=\frac{\rho_{a} c_{p} V n_{A C}}{3,600}\left(T_{i}-T_{o}\right), \quad \text { where }
$$

$\rho_{a}=$ air density,
$c_{P}=$ air specific heat,
$V=$ room volume,
$n_{A C}=$ number of air changes per hour,
$T_{i}=$ indoor temperature, and
$T_{o}=$ outdoor temperature.
Crack method

$$
\dot{Q}=1.2 C L\left(T_{i}-T_{o}\right), \quad \text { where }
$$

$C=$ coefficient and
$L=$ crack length.

FANS, PUMPS, AND COMPRESSORS

Scaling Laws

(see page 44 on Similitude)

$$
\begin{aligned}
& \left(\frac{Q}{N D^{3}}\right)_{2}=\left(\frac{Q}{N D^{3}}\right)_{1} \\
& \left(\frac{\dot{m}}{\rho N D^{3}}\right)_{2}=\left(\frac{\dot{m}}{\rho N D^{3}}\right)_{1} \\
& \left(\frac{H}{N^{2} D^{2}}\right)_{2}=\left(\frac{H}{N^{2} D^{2}}\right)_{1} \\
& \left(\frac{P}{\rho N^{2} D^{2}}\right)_{2}=\left(\frac{P}{\rho N^{2} D^{2}}\right)_{1} \\
& \left(\frac{\dot{W}}{\rho N^{3} D^{5}}\right)_{2}=\left(\frac{\dot{W}}{\rho N^{3} D^{5}}\right)_{1}, \quad \text { where }
\end{aligned}
$$

$Q=$ volumetric flow rate,
$\dot{m}=$ mass flow rate,
$H=$ head,
$P=$ pressure rise,
$\dot{W}=$ power,
$\rho=$ fluid density,
$N=$ rotational speed, and
$D=$ impeller diameter.

Subscripts 1 and 2 refer to different but similar machines or to different operating conditions of the same machine.

Fan Characteristics

Typical Fan Curves

backward curved

$$
\dot{W}=\frac{\Delta P Q}{\eta_{f}}, \quad \text { where }
$$

$\dot{W}=$ fan power,
$\Delta P=$ pressure rise, and
$\eta_{f}=$ fan efficiency.

Pump Characteristics

Flow Rate, Q
Net Positive Suction Head (NPSH)

$$
N P S H=\frac{P_{i}}{\rho g}+\frac{V_{i}^{2}}{2 g}-\frac{P_{v}}{\rho g}, \quad \text { where }
$$

$P_{i}=$ inlet pressure to pump,
$V_{i}=$ velocity at inlet to pump, and
$P_{v}=$ vapor pressure of fluid being pumped.

$$
\dot{W}=\frac{\rho g H Q}{\eta} \text {, where }
$$

$\dot{W}=$ pump power,
η = pump efficiency, and
$H=$ head increase.

Compressor Characteristics

$\dot{m} \quad=$ mass flow rate and
$P_{e} / P_{i}=$ exit to inlet pressure ratio.

$$
\begin{aligned}
\dot{W} & =\dot{m}\left(h_{e}-h_{i}+\frac{V_{e}^{2}-V_{i}^{2}}{2}\right) \\
& =\dot{m}\left(c_{p}\left(T_{e}-T_{i}\right)+\frac{V_{e}^{2}-V_{i}^{2}}{2}\right), \quad \text { where }
\end{aligned}
$$

$\dot{W} \quad=$ input power,
$h_{e}, h_{i}=$ exit, inlet enthalpy,
$V_{e}, V_{i}=$ exit, inlet velocity,
$c_{P} \quad=$ specific heat at constant pressure, and $T_{e}, T_{i}=$ exit, inlet temperature.

$$
\begin{aligned}
& h_{e}=h_{i}+\frac{h_{e s}-h_{i}}{\eta} \\
& T_{e}=T_{i}+\frac{T_{e s}-T_{i}}{\eta}, \quad \text { where }
\end{aligned}
$$

$h_{e s}=$ exit enthalpy after isentropic compression,
$T_{e s}=$ exit temperature after isentropic compression, and $\eta=$ compression efficiency.

ENERGY CONVERSION AND POWER PLANTS

 (see also THERMODYNAMICS section)
Internal Combustion Engines

OTTO CYCLE (see THERMODYNAMICS section)
DIESEL CYCLE

S
$\mathrm{r}=V_{1} / V_{2}$
$\mathrm{r}_{c}=V_{3} / V_{2}$
$\eta=1-\frac{1}{r^{k-1}}\left[\frac{r_{c}^{k}-1}{k\left(r_{c}-1\right)}\right]$
$k=c_{P} / c_{v}$

Brake Power

$\dot{W}_{b}=2 \pi T N=2 \pi F R N, \quad$ where
$\dot{W}_{b}=$ brake power, W
$T=$ torque, $\mathrm{N} \cdot \mathrm{m}$
$N=$ rotation speed, rev/s
$F=$ force at end of brake arm, N ; and
$R=$ length of brake arm, m

INDICATED POWER

$$
\dot{W}_{i}=\dot{W}_{b}+\dot{W}_{f}, \quad \text { where }
$$

$\dot{W}_{i}=$ indicated power, W and
$\dot{W}_{f}=$ friction power, W
BRAKE THERMAL EFFICIENCY
$\eta_{b}=\frac{\dot{W}_{b}}{\dot{m}_{f}(H V)}, \quad$ where
$\eta_{b}=$ brake thermal efficiency,
$\dot{m}_{f}=$ fuel consumption rate, kg / s and
$H V=$ heating value of fuel, J / kg
INDICATED THERMAL EFFICIENCY

$$
\eta_{i}=\frac{\dot{W}_{i}}{\dot{m}_{f}(H V)}
$$

Mechanical Efficiency

$$
\eta_{m}=\frac{\dot{W}_{b}}{\dot{W}_{i}}=\frac{\eta_{b}}{\eta_{i}}
$$

DISPLACEMENT VOLUME

$V_{d}=\pi B^{2} S, \mathrm{~m}^{3}$ for each cylinder
Total volume $=V_{t}=V_{d}+V_{c}, \mathrm{~m}^{3}$
$V_{c}=$ clearance volume, m^{3}

COMPRESSION RATIO

$$
r_{c}=V_{t} / V_{c}
$$

MEAN EFFECTIVE PRESSURE (тер)

$$
\text { mep }=\frac{\dot{W} n_{s}}{V_{d} n_{c} N}, \quad \text { where }
$$

$n_{s}=$ number of crank revolutions per power stroke,
$n_{c}=$ number of cylinders, and
$V_{d}=$ displacement volume per cylinder.
mep can be based on brake power (bmep), indicated power (imep), or friction power (fпер).

VOLUMETRIC EFFICIENCY

$$
\eta_{v}=\frac{2 \dot{m}_{a}}{\rho_{a} V_{d} n_{c} N}
$$

(four-stroke cycles only)
where
$\dot{m}_{a}=$ mass flow rate of air into engine, kg / s
$\rho_{a}=$ density of air, $\mathrm{kg} / \mathrm{m}^{3}$
SPECIFIC FUEL CONSUMPTION (sfc)

$$
s f c=\frac{\dot{m}_{f}}{\dot{W}}=\frac{1}{\eta H V}, \quad \mathrm{~kg} / \mathrm{J}
$$

Use η_{b} and \dot{W}_{b} for $b s f c$ and η_{i} and \dot{W}_{i} for $i s f c$.

Gas Turbines

BRAYTON CYCLE (steady-flow cycle)

$$
\begin{array}{lll}
w_{12} & = & h_{1}-h_{2}=c_{P}\left(T_{1}-T_{2}\right) \\
w_{34} & = & h_{3}-h_{4}=c_{P}\left(T_{3}-T_{4}\right) \\
w_{\text {net }} & = & w_{12}+w_{34} \\
q_{23} & = & h_{3}-h_{2}=c_{P}\left(T_{3}-T_{2}\right) \\
q_{41} & = & h_{1}-h_{4}=c_{P}\left(T_{1}-T_{4}\right) \\
q_{\text {net }} & = & q_{23}+q_{41} \\
\eta & = & w_{\text {net }} / q_{23}
\end{array}
$$

$$
\begin{array}{ll}
h_{3}-h_{2}=h_{5}-h_{6} \text { or } & T_{3}-T_{2}=T_{5}-T_{6} \\
q_{34}=h_{4}-h_{3}=c_{P}\left(T_{4}-T_{3}\right) & \\
q_{56}=h_{6}-h_{5}=c_{P}\left(T_{6}-T_{5}\right) \\
\eta=w_{\text {net }} / q_{34} &
\end{array}
$$

Regenerator efficiency
$\eta_{\mathrm{reg}}=\frac{h_{3}-h_{2}}{h_{5}-h_{2}}=\frac{T_{3}-T_{2}}{T_{5}-T_{2}}$
$h_{3}=h_{2}+\eta_{\text {reg }}\left(h_{5}-h_{2}\right)$
or
$T_{3}=T_{2}+\eta_{\mathrm{reg}}\left(T_{5}-T_{2}\right)$

Steam Power Plants

FEEDWATER HEATERS

$\dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}=h_{3}\left(\dot{m}_{1}+\dot{m}_{2}\right)$

$h_{2}=h_{1}$

JUNCTION

$$
\dot{\mathrm{m}}_{1} \mathrm{~h}_{1}+\dot{\mathrm{m}}_{2} \mathrm{~h}_{2}=\mathrm{h}_{3}\left(\dot{\mathrm{~m}}_{1}+\dot{\mathrm{m}}_{2}\right)
$$

PUMP

$$
\begin{aligned}
& w=h_{1}-h_{2}=\left(h_{1}-h_{2 s}\right) / \eta_{p} \\
& h_{2 s}-h_{1}=v\left(P_{2}-P_{1}\right) \\
& w=-\frac{v\left(P_{2}-P_{1}\right)}{\eta_{p}}
\end{aligned}
$$

MACHINE DESIGN

Variable Loading Failure Theories

Modified Goodman Theory: The modified Goodman criterion states that a fatigue failure will occur whenever

$$
\frac{\sigma_{a}}{S_{e}}+\frac{\sigma_{m}}{S_{u t}} \geq 1 \quad \text { or } \quad \frac{\sigma_{\max }}{\operatorname{Sy}} \geq 1, \quad \sigma_{m} \geq 0, \quad \text { where }
$$

$S_{e}=$ fatigue strength,
$S_{u t}=$ ultimate strength,
$S_{y}=$ yield strength,
$\sigma_{a}=$ alternating stress, and
$\sigma_{m}=$ mean stress
$\sigma_{\text {max }}=\sigma_{m}+\sigma_{a}$

Soderberg Theory: The Soderberg theory states that a fatigue failure will occur whenever

$$
\frac{\sigma_{a}}{S_{e}}+\frac{\sigma_{m}}{S_{y}} \geq 1, \quad \sigma_{m} \geq 0
$$

Endurance Limit: When test data is unavailable, the endurance limit for steels may be estimated as

$$
S_{e}^{\prime}=\left\{\begin{array}{c}
0.5 S_{u t}, S_{u t} \leq 1,400 \mathrm{MPa} \\
700 \mathrm{MPa}, S_{u t}>1,400 \mathrm{MPa}
\end{array}\right\}
$$

Endurance Limit Modifying Factors: Endurance limit modifying factors are used to account for the differences between the endurance limit as determined from a rotating beam test, $S_{e}{ }^{\prime}$, and that which would result in the real part, S_{e}.

$$
S_{e}=k_{a} k_{b} k_{c} k_{d} k_{e} k_{f} S_{e}^{\prime} \text {, where }
$$

Surface Factor, $k_{a}: \quad k_{a}=a S_{u t}^{b}$

Surface Finish	Factor \boldsymbol{a}		Exponent \boldsymbol{b}
	$\mathbf{M P a}$	-0.085	
Ground	1.34	1.58	-0.265
Machined or CD	2.70	4.51	-0.718
Hot rolled	14.4	57.7	-0.995
As forged	39.9	272.0	-2

Size Factor, k_{b} :

For bending and torsion:

$$
\begin{array}{cl}
\quad d \leq 8 \mathrm{~mm} ; & k_{b}=1 \\
8 \mathrm{~mm} \leq d \leq 250 \mathrm{~mm} ; & k_{b}=1.189 d_{e f f}^{-0.097} \\
d>250 \mathrm{~mm} ; & 0.6 \leq k_{b} \leq 0.75 \\
\text { For axial loading: } & k_{b}=1
\end{array}
$$

Load Factor, k_{c} :

$$
\begin{array}{ll}
k_{c}=0.923 & \text { axial loading, } \mathrm{S}_{\mathrm{ut}} \leq 1520 \mathrm{MPa} \\
k_{c}=1 & \text { axial loading, } \mathrm{S}_{\mathrm{ut}}>1520 \mathrm{MPa} \\
k_{c}=1 & \text { bending }
\end{array}
$$

Temperature Factor, k_{d} :

for $\mathrm{T} \leq 450^{\circ} \mathrm{C}, k_{d}=1$
Miscellaneous Effects Factor, k_{e} : Used to account for strength reduction effects such as corrosion, plating, and residual stresses. In the absence of known effects, use $k_{e}=1$.

Shafts and Axles

Static Loading: The maximum shear stress and the von Mises stress may be calculated in terms of the loads from

$$
\begin{aligned}
& \tau_{\max }=\frac{2}{\pi d^{3}}\left[(8 M+F d)^{2}+(8 T)^{2}\right]^{1 / 2} \\
& \sigma^{\prime}=\frac{4}{\pi d^{3}}\left[(8 M+F d)^{2}+(48 T)^{2}\right]^{1 / 2}
\end{aligned}
$$

where
$M=$ the bending moment,
$F=$ the axial load,
$T=$ the torque, and
$d=$ the diameter.
Fatigue Loading: Using the maximum-shear-stress theory combined with the Soderberg line for fatigue, the diameter and safety factor are related by

$$
\frac{\pi d^{3}}{32}=n\left[\left(\frac{M_{m}}{S_{y}}+\frac{K_{f} M_{a}}{S_{e}}\right)^{2}+\left(\frac{T_{m}}{S_{y}}+\frac{K_{f s} T_{a}}{S_{e}}\right)^{2}\right]^{1 / 2}
$$

where
$d=$ diameter,
$n=$ safety factor,
$M_{a}=$ alternating moment,
$M_{m}=$ mean moment,
$T_{a}=$ alternating torque,
$T_{m}=$ mean torque,
$S_{e}=$ fatigue limit,
$S_{y}=$ yield strength,
$K_{f}=$ fatigue strength reduction factor, and
$K_{f s}=$ fatigue strength reduction factor for shear.

Screws, Fasteners, and Connections

Square Thread Power Screws: The torque required to raise, T_{R}, or to lower, T_{L}, a load is given by

$$
\begin{aligned}
& T_{R}=\frac{F d_{m}}{2}\left(\frac{l+\pi \mu d_{m}}{\pi d_{m}-\mu l}\right)+\frac{F \mu_{c} d_{c}}{2} \\
& T_{L}=\frac{F d_{m}}{2}\left(\frac{\pi \mu d_{m}-l}{\pi d_{m}+\mu l}\right)+\frac{F \mu_{c} d_{c}}{2}
\end{aligned}
$$

where
$d_{c}=$ mean collar diameter,
$d_{m}=$ mean thread diameter,
$l=$ lead,
$F=$ load,
$\mu=$ coefficient of friction for thread, and
$\mu_{c}=$ coefficient of friction for collar.

The efficiency of a power screw may be expressed as

$$
\eta=F l /(2 \pi T)
$$

Threaded Fasteners: The load carried by a bolt in a threaded connection is given by

$$
F_{b}=C P+F_{i} \quad F_{m}<0
$$

while the load carried by the members is

$$
F_{m}=(1-C) P-F_{i} \quad F_{m}<0
$$

where
$C=$ joint coefficient,
$=k_{b} /\left(k_{b}+k_{m}\right)$
$F_{b}=$ total bolt load,
$F_{i}=$ bolt preload,
$F_{m}=$ total material load,
$P=$ externally applied load,
$k_{b}=$ the effective stiffness of the bolt or fastener in the grip, and
$k_{m}=$ the effective stiffness of the members in the grip.
Bolt stiffness may be calculated from

$$
k_{b}=\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}} \text {, where }
$$

$A_{d}=$ major-diameter area,
$A_{t}=$ tensile-stress area,
$E=$ modulus of elasticity,
$l_{d}=$ length of unthreaded shank, and
$l_{t}=$ length of threaded shank contained within the grip.
Member stiffness may be obtained from
$k_{m}=d E A e^{b(\mathrm{~d} / l)}$, where
$d=$ bolt diameter,
$E=$ modulus of elasticity of member, and
$l=$ clamped length.
Coefficient A and b are given in the table below for various joint member materials.

Material	\boldsymbol{A}	\boldsymbol{b}
Steel	0.78715	0.62873
Aluminum	0.79670	0.63816
Copper	0.79568	0.63553
Gray cast iron	0.77871	0.61616

Threaded Fasteners-Design Factors: The bolt load factor is

$$
n_{b}=\left(S_{p} A_{t}-F_{i}\right) / C P
$$

The factor of safety guarding against joint separation is

$$
n_{s}=F_{i} /[P(1-C)]
$$

Threaded Fasteners-Fatigue Loading: If the externally applied load varies between zero and P, the alternating stress is

$$
\sigma_{a}=C P /\left(2 A_{t}\right)
$$

and the mean stress is

$$
\sigma_{m}=\sigma_{a}+F_{i} / A_{t}
$$

Bolted and Riveted Joints Loaded in Shear:

(a) FASTENER IN SHEAR

Failure by pure shear, (a)
$\tau=F / A$, where
$F=$ shear load and
$A=$ area of bolt or rivet.

(b) MEMBER RUPTURE

Failure by rupture, (b)
$\sigma=F / A$, where
$F=$ load and
$A=$ net cross-sectional area of thinnest member.

(c) MEMBER OR FASTENER CRUSHING

Failure by crushing of rivet or member, (c)
$\sigma=F / A$, where
$F=$ load and
$A=$ projected area of a single rivet.

(d) FASTENER GROUPS

Fastener groups in shear, (d).

MECHANICAL ENGINEERING (continued)

The location of the centroid of a fastener group with respect to any convenient coordinate frame is:

$$
\bar{x}=\frac{\sum_{i=1}^{n} A_{i} x_{i}}{\sum_{i=1}^{n} A_{i}}, \quad \bar{y}=\frac{\sum_{i=1}^{n} A_{i} y_{i}}{\sum_{i=1}^{n} A_{i}}, \quad \text { where }
$$

$n=$ total number of fasteners,
$i=$ the index number of a particular fastener,
$A_{i}=$ cross-sectional area of the i th fastener,
$x_{i}=x$-coordinate of the center of the i th fastener, and
$y_{i}=y$-coordinate of the center of the i th fastener.
The total shear force on a fastener is the vector sum of the force due to direct shear P and the force due to the moment M acting on the group at its centroid.
The magnitude of the direct shear force due to P is

$$
\left|F_{1 i}\right|=\frac{P}{n} . \quad \begin{aligned}
& \text { This force acts in the same } \\
& \text { direction as } P . \text { The magnitude of } \\
& \text { the shear force due to } M \text { is }
\end{aligned}
$$

This force acts perpendicular to a line drawn from the

$$
\left|F_{2 i}\right|=\frac{M r_{i}}{\sum_{i=1}^{n} r_{i}^{2}} . \begin{aligned}
& \text { centroid to the center of a } \\
& \text { particular fastener. Its sense is such } \\
& \text { that its moment is in the same } \\
& \text { direction (CW or CCW) as } M .
\end{aligned}
$$

Mechanical Springs

Helical Linear Springs: The shear stress in a helical linear spring is

$$
\tau=K_{s} \frac{8 F D}{\pi d^{3}}, \quad \text { where }
$$

d = wire diameter,
$F=$ applied force,
$D=$ mean spring diameter, and
$K_{s}=(2 C+1) /(2 C)$
$C=D / d$
The deflection and force are related by $F=k x$ where the spring rate (spring constant) k is given by

$$
k=d^{4} G /\left(8 D^{3} N\right)
$$

where G is the shear modulus of elasticity and N is the number of active coils.
Spring Material: The minimum tensile strength of common spring steels may be determined from

$$
S_{u t}=A / d^{m}
$$

where $S_{u t}$ is the tensile strength in MPa, d is the wire diameter in millimeters, and A and m are listed in the following table.

Material	ASTM	\boldsymbol{m}	\boldsymbol{A}
Music wire	A228	0.163	2060
Oil-tempered wire	A229	0.193	1610
Hard-drawn wire	A227	0.201	1510
Chrome vanadium	A232	0.155	1790
Chrome silicon	A401	0.091	1960

Maximum allowable torsional stress for static applications may be approximated as

$$
\begin{gathered}
S_{s y}=\tau=0.45 S_{u t} \text { cold-drawn carbon steel (A227, } \\
\text { A228, A229) } \\
S_{s y}=\tau=\begin{array}{c}
0.50 S_{u t} \text { hardened and tempered carbon and } \\
\text { low-alloy steels (A232, A401) }
\end{array}
\end{gathered}
$$

Compression Spring Dimensions

Type of Spring Ends		
Term	Plain	Plain and Ground
End coils, N_{e}	0	1
Total coils, N_{t}	N	$N+1$
Free length, L_{0}	$p N+d$	$p(N+1)$
Solid length, L_{s}	$d\left(N_{t}+1\right)$	$d N_{t}$
Pitch, p	$\left(L_{0}-d\right) / N$	$L_{d}(N+1)$

Term	Squared or Closed	Squared and Ground
End coils, N_{e}	2	2
Total coils, N_{t}	$N+2$	$N+2$
Free length, L_{0}	$p N+3 d$	$p N+2 d$
Solid length, L_{s}	$d\left(N_{t}+1\right)$	$d N_{t}$
Pitch, p	$\left(L_{0}-3 d\right) / N$	$\left(L_{0}-2 d\right) / N$

Helical Torsion Springs: The bending stress is given as

$$
\sigma=K_{i}\left[32 F r /\left(\pi d^{3}\right)\right]
$$

where F is the applied load and r is the radius from the center of the coil to the load.
$K_{i}=$ correction factor
$=\left(4 C^{2}-C-1\right) /[4 C(C-1)]$
$C=D / d$
The deflection θ and moment $F r$ are related by

$$
F r=k \theta
$$

where the spring rate k is given by

$$
k=d^{4} E /(64 N)
$$

where k has units of $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$ and θ is in radians.

Spring Material: The strength of the spring wire may be found as was done in the section on linear springs. The allowable stress σ is then given by

$$
\begin{aligned}
S_{y}=\sigma= & 0.78 S_{u t} \text { cold-drawn carbon steel (A227, } \\
& \text { A228, A229) } \\
S_{y}=\sigma= & 0.87 S_{u t} \text { hardened and tempered carbon and } \\
& \text { low-alloy steel (A232, A401) }
\end{aligned}
$$

Ball/Roller Bearing Selection

The minimum required basic load rating (load for which 90% of the bearings from a given population will survive 1 million revolutions) is given by

$$
C=P L^{\frac{1}{a}}, \quad \text { where }
$$

$C=$ minimum required basic load rating,
$P=$ design radial load,
$L=$ design life (in millions of revolutions), and
$a=3$ for ball bearings, $10 / 3$ for roller bearings.
When a ball bearing is subjected to both radial and axial loads, an equivalent radial load must be used in the equation above. The equivalent radial load is

$$
P_{e q}=X V F_{r}+Y F_{a} \text {, where }
$$

$P_{e q}=$ equivalent radial load,
$F_{r}=$ applied constant radial load, and
$F_{a}=$ applied constant axial (thrust) load.
For radial contact, groove ball bearings:
$V=1$ if inner ring rotating, 1.2 outer ring rotating,

$$
\begin{aligned}
& \text { If } F_{a} /\left(V F_{r}\right)>e, \\
& \quad X=0.56, \quad \text { and } \quad Y=0.840\left(\frac{F_{a}}{C_{o}}\right)^{-0.247} \\
& \text { where } e=0.513\left(\frac{F_{a}}{C_{o}}\right)^{0.236}, \text { and }
\end{aligned}
$$

$C_{o}=$ basic static load rating, from bearing catalog.
If $F_{a} /\left(V F_{r}\right) \leq e, \mathrm{X}=1$ and $\mathrm{Y}=0$.

Press/Shrink Fits

The interface pressure induced by a press/shrink fit is

$$
p=\frac{0.5 \delta}{\frac{r}{E_{o}}\left(\frac{r_{o}^{2}+r^{2}}{r_{o}^{2}-r^{2}}\right)+\frac{r}{E_{i}}\left(\frac{r^{2}+r_{i}^{2}}{r^{2}-r_{i}^{2}}+v_{i}\right)}
$$

where the subscripts i and o stand for the inner and outer member, respectively, and
p = inside pressure on the outer member and outside pressure on the inner member,
$\delta=$ the diametral interference,
$r=$ nominal interference radius,
$r_{i}=$ inside radius of inner member,
$r_{o}=$ outside radius of outer member,
$E=$ Young's modulus of respective member, and
$v=$ Poisson's ratio of respective member.

See the MECHANICS OF MATERIALS section on thickwall cylinders for the stresses at the interface.
The maximum torque that can be transmitted by a press fit joint is approximately

$$
T=2 \pi r^{2} \mu p l,
$$

where r and p are defined above,
$T=$ torque capacity of the joint,
$\mu=$ coefficient of friction at the interface, and
$l=$ length of hub engagement.

Intermediate- and Long-Length Columns

The slenderness ratio of a column is $S_{r}=l / k$, where l is the length of the column and k is the radius of gyration. The radius of gyration of a column cross-section is,

$$
k=\sqrt{I / A}
$$

where I is the area moment of inertia and A is the crosssectional area of the column. A column is considered to be intermediate if its slenderness ratio is less than or equal to $\left(S_{r}\right)_{D}$, where

$$
\left(S_{r}\right)_{D}=\pi \sqrt{\frac{2 E}{S_{y}}}, \text { and }
$$

$E=$ Young's modulus of respective member, and
$S_{y}=$ yield strength of the column material.
For intermediate columns, the critical load is

$$
P_{c r}=A\left[S_{y}-\frac{1}{E}\left(\frac{S_{y} S_{r}}{2 \pi}\right)^{2}\right] \text {, where }
$$

$P_{c r}=$ critical buckling load,
$A=$ cross-sectional area of the column,
$S_{y}=$ yield strength of the column material,
$E=$ Young's modulus of respective member, and
$S_{r}=$ slenderness ratio.
For long columns, the critical load is

$$
P_{c r}=\frac{\pi^{2} E A}{S_{r}^{2}}
$$

where the variable area as defined above.
For both intermediate and long columns, the effective column length depends on the end conditions. The AISC recommended values for the effective lengths of columns are, for: rounded-rounded or pinned-pinned ends, $l_{\text {eff }}=l$; fixedfree, $l_{e f f}=2.1 l$; fixed-pinned, $l_{e f f}=0.80 l$; fixed-fixed, $l_{\text {eff }}=$ $0.65 l$. The effective column length should be used when calculating the slenderness ratio.

Gearing

Gear Trains: Velocity ratio, m_{v}, is the ratio of the output velocity to the input velocity. Thus, $m_{v}=\omega_{\text {out }} / \omega_{\text {in }}$. For a twogear train, $m_{v}=-N_{\text {in }} / N_{\text {out }}$ where $N_{\text {in }}$ is the number of teeth on the input gear and $N_{\text {out }}$ is the number of teeth on the output gear. The negative sign indicates that the output gear rotates in the opposite sense with respect to the input gear. In a compound gear train, at least one shaft carries more than one gear (rotating at the same speed). The velocity ratio for a compound train is:

$$
m_{v}= \pm \frac{\text { product of number of teeth on driver gears }}{\text { product of number of teeth on driven gears }}
$$

A simple planetary gearset has a sun gear, an arm that rotates about the sun gear axis, one or more gears (planets) that rotate about a point on the arm, and a ring (internal) gear that is concentric with the sun gear. The planet gear(s) mesh with the sun gear on one side and with the ring gear on the other. A planetary gearset has two, independent inputs and one output (or two outputs and one input, as in a differential gearset).
Often, one of the inputs is zero, which is achieved by grounding either the sun or the ring gear. The velocities in a planetary set are related by

$$
\frac{\omega_{f}-\omega_{a r m}}{\omega_{L}-\omega_{a r m}}= \pm m_{v}, \quad \text { where }
$$

$\omega_{f}=$ speed of the first gear in the train,
$\omega_{L}=$ speed of the last gear in the train, and
$\omega_{a r m}=$ speed of the arm.
Neither the first nor the last gear can be one that has planetary motion. In determining m_{v}, it is helpful to invert the mechanism by grounding the arm and releasing any gears that are grounded.
Loading on Straight Spur Gears: The load, W, on straight spur gears is transmitted along a plane that, in edge view, is called the line of action. This line makes an angle with a tangent line to the pitch circle that is called the pressure angle ϕ. Thus, the contact force has two components: one in the tangential direction, W_{t}, and one in the radial direction, W_{r}. These components are related to the pressure angle by

$$
W_{r}=W_{t} \tan (\phi) .
$$

Only the tangential component W_{t} transmits torque from one gear to another. Neglecting friction, the transmitted force may be found if either the transmitted torque or power is known:

$$
\begin{aligned}
& W_{t}=\frac{2 T}{d}=\frac{2 T}{m N}, \\
& W_{t}=\frac{2 H}{d \omega}=\frac{2 H}{m N \omega}, \quad \text { where }
\end{aligned}
$$

$W_{t}=$ transmitted force, newton,
$T=$ torque on the gear, newton-mm,
$d=$ pitch diameter of the gear, mm ,
$N=$ number of teeth on the gear
$m=$ gear module, mm (same for both gears in mesh)
$H=$ power, kW , and
$\omega=$ speed of gear, rad/sec
Stresses in Spur Gears: Spur gears can fail in either bending (as a cantilever beam, near the root) or by surface fatigue due to contact stresses near the pitch circle. AGMA Standard 2001 gives equations for bending stress and surface stress. They are:

$$
\begin{aligned}
\sigma_{b} & =\frac{W_{t}}{F m J} \frac{K_{a} K_{m}}{K_{v}} K_{s} K_{B} K_{I}, \text { bending and } \\
\sigma_{b} & =C_{p} \sqrt{\frac{W_{t}}{F I d} \frac{C_{a} C_{m}}{C_{v}} C_{s} C_{f}}, \text { surface stress. }
\end{aligned}
$$

Where,
$\sigma_{b}=$ bending stress,
$W_{t}=$ transmitted load,
$F=$ face width,
$m=$ module,
$J=$ bending strength geometry factor,
$K_{a}=$ application factor,
$K_{B}=$ rim thickness factor,
$K_{l}=$ idler factor,
$K_{m}=$ load distribution factor,
$K_{s}=$ size factor,
$K_{v}=$ dynamic factor,
$C_{p}=$ elastic coefficient,
$I=$ surface geometry factor,
d = pitch diameter of gear being analyzed, and
$C_{f}=$ surface finish factor.
C_{a}, C_{m}, C_{s}, and C_{v} are the same as K_{a}, K_{m}, K_{s}, and K_{v}, respectively.
$2^{\text {nd }}$ factorial experiments, 117

A

AASHTO, automobile pavement design, 105
AC circuits, 74
AC machines, 108
Accelerated Cost Recovery System (ACRS), 80
acids and bases, 64
addition, 6
adiabatic humidification (evaporative cooling), 126
adiabatic mixing, 126
adiabatic process, 50
air refrigeration cycle, 125
airport layout and design, 104
algebra of complex numbers, 75
anode, 64
anode reaction (oxidation), 69
approximations, 116
Archimedes' principle and buoyancy, 39
area formulas for surveying, 105
AREA vertical curve criteria for track profile, 103
arithmetic progression, 7
ASD beams, 96
ASD columns, 98
ASD member connections, 96
ASD, steel design, 95
ASHRAE psychrometric chart No. 1, 56
ASTM, 133
ASTM grain size, 71
ASTM standard reinforcing bars, 94
atomic bonding, 68
atomic number, 64
automobile pavement design, 105
average and range charts, 115
average value, 74
Avogadro's number, 64

B

balanced three-phase systems, 109
ball/roller bearing selection, 134
banking of curves (without friction), 27
batch reactor constant T and V, 89
batch reactor, general, 89
beam deflection formulas - special cases, 37
beam design, 96
beam fixed-end moment formulas, 94
benefit-cost analysis, 80
binary phase diagrams, 69
binomial distribution, 8
biomechanics of the human body, 118
bipolar junction transistor (BJT), 110, 111
BOD exertion, 99
boilers, condensers, evaporators, one side in a heat exchanger, 48
boiling point elevation, 64
bolted and riveted joints loaded in shear, 132
bonds, 80
book value, 79
brake power, 128
brake thermal efficiency, 129
brake-band or belt friction, 23
Brayton cycle (steady-flow cycle), 129
Brayton cycle with regeneration, 130
break-even analysis, 80
canonical product of sums (POS), 114
canonical sum of products (SOP), 114
capacitors and inductors, 73
capacitors and inductors in parallel and series, 73
capitalized costs, 80
catalyst, 64
cathode, 64, 69
centrifugal force, 27
centroids and moments of inertia, 18
centroids of masses, areas, lengths, and volumes, 22
chemical
reaction engineering, 89
reaction equilibrium, 88
thermodynamics, 88
circle, 4
circular sector, 16
circular segment, 16
Clausius statement of second law, 50
closed thermodynamic system, 47
closed-system availability, 51
columns, 36
concrete design, 95
steel design, 97
combustion
in air, 50
in excess air, 50
incomplete, 50
processes, 50
common metallic crystal structures, 68
common thermodynamic cycles, 52
commonly used k values for columns, 97
communication theory concepts, 109
complex numbers, 5, 75
complex power, 75
composite flip-flop state transition, 114
composite materials, 71
compressible fluid, 43
compression members, 97
compression ratio, 129
computer knowledge, 76
concept of weight, 25
concurrent forces, 23
condensation
outside horizontal tubes, 60
pure vapor on a vertical surface, 60
conduction, 58
through a plane wall, 58
conductive heat transfer, 60
confidence interval, 10
confidence interval for a, 117
confidence interval for $\mathrm{b}, 117$
conic section equation, 4
conic sections, 3
construction, 105
continuity equation, 39
continuous distillation (binary system), 90
continuous stirred tank reactor (CSTR), 90
continuous stirred tank reactors in series, 90
control systems, 77
convection, 58, 91
convolution, 109
cooling and dehumidification, 125
cooling load, 127
coordination number, 68
corollary, 50
corrosion, 69
CPM precedence relationships (activity on node), 105
crest - vertical curve, 101
critical depth, 100
critical path method (cpm), 119
critical values of the F distribution table, 13
critically damped, 18,78
crystallography, 68
current, 72
curvature in rectangular coordinates, 14
curvature of any curve, 14
cylindrical pressure vessel, 33

D

Darcy's equation, 99
DC machines, 108
deflection of beams, 36
deflection of trusses and frames, 94
deflectors and blades, 42
DeMorgan's theorem, 113
density, specific volume, specific weight, and specific gravity, 38
depreciation, 80
derivative, 14
derivatives and indefinite integrals, 15
design for shear-beams, 97
design of experiments one-way anova table, 121
design shear strength, 97
design strength ASD/LRFD, 96
determinants, 6
diesel cycle, 128
difference equations, 19
differential (simple or rayleigh) distillation, 90
differential calculus, 14
differential equations, 18
diffusion, 69, 91
diffusion coefficient, 69
digital signal processing, 109
dimensional homogeneity and dimensional analysis, 44
dimensionless group equation (Sherwood), 91
diodes, 111
discount factors for continuous compounding, 79
dispersion, mean, median, and mode value, 9
displacement volume, 129
distibution, 9
distillation, 90
distortion-energy theory, 35
drag coefficients for spheres, disks, and cylinders, 46
drilling, 120
dual linear program, 115

E

Earthwork formulas, 105
effective flange width-concrete t-beams, 95
effective or RMS values, 74
elastic potential energy, 26
elastic strain energy, 36
electrochemistry, 64
electromagnetic dynamic fields, 108
electrostatic fields, 72
electrostatics, 72
ellipse, 3, 16
endurance limit, 131
endurance limit modifying factors, 131
endurance test, 70
energy conversion and power plants, 128
energy line (Bernoulli equation), 40
engineering strain, 33
enhancement MOSFET (low and medium frequency), 112
entropy, 50
entropy change for solids and liquids, 51
environmental engineering, 98
environmental engineering formula (definitions), 98
equilibrium constant of a chemical reaction, 64
equimolar counter-diffusion (gases), 91
equipment requirements, 119
equivalent mass, 64
ergonomics, 118, 122
hearing, 123, 124
essential prime implicant, 114
Euler's
approximation, 20
formula, 36, 97
identity, 5
face milling, 120
facility design, 119
facility layout, 119
fan characteristics, 127
fans, pumps, and compressors, 127
Faraday's law, 64, 72
fastener groups in shear, 132
fatigue loading, 131
feed condition line, 90
feedwater heaters, 130
field equation, 40
first law (energy balance), 48
first law of thermodynamics, 47
first-order linear difference equation, 20
first-order linear nonhomogeneous differential equations, 18
first-order reaction, 89
fixed blade, 42
flash (or equilibrium) distillation, 90
flexure design, 96
flip-flops, 113
flow
in noncircular conduits, 41
of a real fluid, 40
open channel-environmental engineering, 100
parallel to a constant-temperature flat plate, 60
past a constant-temperature sphere, 60
perpendicular to axis of a constant-temperature circular cylinder, 60
flow reactors, steady state, 89
fluid flow, 40
fluid measurements, 43
force, 22
forces on submerged surfaces and the center of pressure, 39
fouling factor, 59
Fourier series, 19, 109
Fourier transform, 19
four-variable Karnaugh map, 114
free vibration, 27
freezing point depression, 64
friction, 23, 26
friction factor for Laminar flow, 41
friction factor to predict heat-transfer and mass transfer coefficients, 63
Froude Number, 100
fundamental constants, 1
fundamental relationships, 116

G

gain margin, 77
gamma function, 10
gas turbines, 129
gear trains, 135
gearing, 135
general considerations, 76
geometric progression, 7
geotechnical definitions, 92
Gibbs
free energy, 50
phase rule, 49
phase rule, 69
gradient, divergence, and curl, 7
half-life, 71
hardenability, 70
hardness, 70
Hazen-Williams equation, 42
heat
capacity, 57
engines, 49
exchangers, 48
transfer rate in a tubular heat exchanger, 60
transfer to/from bodies immersed in a large body of flowing fluid, 60
heat transfer, 63
heating and humidification, 126
heating load, 126
heats of reaction, 89
heats of reaction, solution, formation, and combustion, 64
heat-transfer coefficient, 59
helical linear springs, 133
helical torsion springs, 133
Helmholtz free energy, 50
Henry's law at constant temperature, 50
highway, 102
sag vertical curve criterion for driver or passenger comfort (metric), 102
spiral curve length (metric), 102
superelevation (metric), 102
hollow, thin-walled shafts, 35
Hooke's Law, 34
horizontal curve formulas, 107
HVAC - pure heating and cooling, 125
hydraulic gradient (grade line), 40
hydraulic-elements graph for circular sewers, 100
hydrology, 99
NRCS (SCS) rainfall-runoff, 99
Rational Formula, 99
hyperbola, 3
ideal gas mixtures, 49
impact, 26
impact test, 70
implicant, 114
essential prime implicant, 114
prime implicant, 114
important families of organic compounds, 66
impulse and momentum, 25
impulse response, 109
impulse turbine, 42
impulse-momentum principle, 25,41
incomplete combustion, 50
increase of entropy principle, 50
indicated power, 129
indicated thermal efficiency, 129
induced voltage, 72
inequality of Clausius, 50
infiltration, 127
inflation, 80
influence lines, 94
instantaneous center of rotation, 27
instrumentation, 76
integral calculus, 14
interest factor tables, 81-85
intermediate- and long-length columns, 134
internal combustion engines, 128
inventory models, 118
inverse, 6
iron-iron carbide phase diagram, 69
irreversibility, 51
isentropic process, 50
isothermal, reversible process, 50
jet propulsion, 42
JFETs, 110
job sequencing, 119
junction, 130

K

Karnaugh map (K-Map), 114
Kelvin-Planck statement of second law, 50
Kendall notation, 116
kinematics, 24
kinetic energy, 25, 27
kinetics, 25

Kirchhoff's laws, 73
L
laminar flow, 60
Laplace transforms, 19
laws of probability, 8
Le Chatelier's principle for chemical equilibrium, 64
learning curves, 118
least squares, 117
Lever rule, 69
L'Hospital's Rule (L'Hôpital's Rule), 14
licensee's obligation to employer and clients, 87
licensee's obligation to other licensees, 87
licensee's obligation to society, 87
lime-soda softening, 98
line balancing, 119
linear programming, 115
linear regression and design of experiments, 117
liquid metals, 60
load combinations-structural steel design, 95
loading on straight spur gears, 135
\log mean temperature difference
concurrent flow in tubular heat exchangers, 59
countercurrent flow in tubular heat exchangers, 59
logarithms, 4
logic gates, 113
logic operations and boolean algebra, 113
long columns - Euler's formula, 97
longitudinal grade design criteria for runways, 105
lossless transmission lines, 108
LRFD, 96, 97
LRFD beams, 97
LRFD columns, 97
M
Mach number, 43
machine design, 130
machining formulas, 120
magnetic fields, 72
Manning's equation, 42
environmental engineering, 101
mass
fraction, 49
mass transfer in dilute solutions, 63
mass moment of inertia, 26
mass transfer, 63, 91
material handling, 119
material properties, 36
material removal rate formulas, 120
matrices, 6
maximum
rate of change of gradient in percent grade per station, 103
spacing for stirrups, 95
maximum normal-stress theory, 34
maximum shear-stress theory, 34
maxterm, 114
maxterm list, 114
mean effective pressure (mep), 129
measurement uncertainty, 76
mechanical
efficiency, 129
springs, 133
member connections (block shear), 96
mensuration of areas and volumes, 16,17
metallic elements, 64
metric stopping sight distance, 102
Miller indices, 68
minimum shear reinforcement, 95
minor losses in pipe fittings, contractions, and expansions, 41
minterm, 114
minterm list, 114
miscellaneous effects factor, $\mathrm{k}_{\mathrm{e}}, 131$
Model Rules of Professional Conduct, 86
modified ACRS factors, 80
modified Davis equation - railroads, 102
modified Goodman theory, 130
Mohr's Circle - stress, 2D, 34
molar volume, 64
molarity
solutions, 64
mole fraction of a substance, 64
molecular diffusion, 91
moment
capacity-concrete T-beams, 95
design-concrete design, 95
inertia transfer theorem, 23
moment of inertia, 22
moments (couples), 22
momentum transfer, 63
momentum, heat and mass transfer analogy, 63
Moody (Stanton) diagram, 45
MOSFETs, 110, 112
moving average, 117
moving blade, 42
multipath pipeline problems, 42
multiple server model ($\mathrm{s}>1$), 117
multiplication, 6
Murphree plate efficiency, 90

N

natural (free) convection, 61
NCEES Model Rules of Professional Conduct, 86
N-channel junction field effect transistors (JFET's), 112
Newton's method of minimization, 20
Newton's method of root extraction, 20
NIOSH formula, 118
nomenclature, 16, 47
nomenclature and definitions, 79
non-annual compounding, 79
non-metallic elements, 64
normal depth, 101
normal distribution, 9
normality of solutions, 64
nozzles, diffusers, 48
NPN bipolar junction transistor (BJT), 111
NRCS (SCS) rainfall-runoff, 99
number of atoms in a cell, 68
number systems and codes, 113
numerical integration, 21
numerical methods, 20
numerical solution of ordinary differential equations, 21

0

one-dimensional flows, 39
one-dimensional motion of particle, 25
one-way analysis of variance (anova), 118
open channel flow and/or pipe flow, 42
open channel flow-environmental engineering, 100
open thermodynamic system, 48
open-system availability, 51
operating lines, 90
operational amplifiers, 74
orifice
discharge freely into atmosphere, 44
submerged, 43
orifices, 43
Otto Cycle, 128
overall heat-transfer coefficient, 59
overdamped, 78
oxidation, 64
oxidizing agent, 64
paraboloid of revolution, 17
parallel
axis theorem, 26
resonance, 75
parallelogram, 17
partial
derivative, 14
pressures, 49
volumes, 49
people requirements, 119
periodic table of elements, 65
permutations and combinations, 8
pert, 120
$P-h$ diagram for refrigerant HFC-134a, 55
phase margin, 77
phase relations, 49
phasor transforms of sinusoids, 74
PID controller, 77
pipe bends, enlargements, and contractions, 41
pitot tube, 43
plane circular motion, 24
plane motion of a rigid body, 27
plane truss, 23
method of joints, 23
method of sections, 23
plant location, 119
plug-flow reactor (PFR), 89
polar coordinates, 5
possible cathode reactions (reduction), 69
potential energy, 25
in gravity field, 26
power in a resistive element, 73
power law fluid, 38,40
Preamble to the NCEES Model Rules of Professional Conduct, 86
press/shrink fits, 134
pressure field in a static liquid and manometry, 38
primary, 68
prime implicant, 114
principal stresses, 34
principle of conservation of work and energy, 26
prismoid, 17
probability and density functions
means and variances, 121
probability and statistics, 8
probability density functions, 8
probability distribution functions, 8
probability functions, 8
product of inertia, 23
progressions and series, 7
projectile motion, 25
properties of series, 7
properties of single-component systems, 47
properties of water, 44
psychrometric chart, 49
psychrometrics, 49
pump, 130
pump characteristics, 127
pump power equation, 41

Q
quadratic equation, 3
quadric surface (sphere), 4
queueing models, 116
R
radiation, 58, 61
radiation shields, 62
radius of curvature, 14
radius of gyration, 23
railroads, 102
Raoult's law for vapor-liquid equilibrium, 50
rate of heat transfer in a tubular heat exchanger, 60
rate of transfer
packing factor, 68
parabola, 3, 16
function of gradients at the wall, 63
in terms of coefficients, 63
rate-of-return, 80
rational formula, 99
RC and RL transients, 74
rectangular coordinates, 24
rectifying section, 90
reducing agent, 64
reflux ratio, 90
refrigeration and HVAC, 125
refrigeration cycles, 49
regular polygon (n equal sides), 17
reinforced concrete design, 94
reinforced concrete design definitions, 95
reinforcement limits-concrete design, 95
reinforcement ratio-concrete design, 95
reradiating surface, 62
resistivity, 72
resistors in series and parallel, 73
resolution of a force, 22
resonance, 75
series, 75
resultant, 22
Reynolds Number, 40
right circular cone, 17
right circular cylinder, 17
RMS, 74
roots, 5
rotation about a fixed axis, 27
Routh test, 77
Rules of Professional Conduct, 86

S

sag, 101
sample, 117
saturated water - temperature table, 53
Scaling laws, 127
screw thread, 23
screws, fasteners, and connections, 131
second law of thermodynamics, 50
second-order control-system models, 78
second-order linear difference equation, 20
second-order linear nonhomogeneous differential equations
with constant coefficients, 18
second-order reaction, 89
sensors, types of, 76
series resonance, 75
sewage flow ratio curves, 99
shafts and axles, 131
shape factor relations, 62
shear design-concrete design, 95
shear stress-strain, 33
shearing force and bending moment sign conventions, 35
sight distance related to curve length, 101
sight distance, crest vertical curves (metric), 102
sight distance, sag vertical curves (metric), 102
similitude, 44
simple planetary gearset, 135
Simpson's Rule, 21, 105
sine-cosine relations, 74
single server models $(s=1), 116$
size factor, $\mathrm{k}_{\mathrm{b}}, 131$
slab milling, 120
Soderberg theory, 131
solid-state electronics and devices, 110
solubility product constant, 64
source equivalents, 73
special cases of closed systems, 48
special cases of open systems, 48
special cases of steady-flow energy equation, 48
specific energy, 100
specific energy diagram-environmental engineering, 101
specific fuel consumption (sfc), 129
sphere, 16
spiral transitions to horizontal curves, 102
spring material, 133, 134
square thread power screws, 131
standard deviation charts, 115
standard error of estimate, 117
standard oxidation potentials for corrosion reactions, 67
standard tensile test, 70
state functions (properties), 47
state-variable control-system models, 78
static loading, 131
static loading failure theories, 34
statically determinate truss, 23
statistical quality control, 115
steady conduction with internal energy generation, 60
steady, incompressible flow in conduits and pipes, 41
steady-state error $e_{s s}(t), 77$
steady-state mass balance for aeration basin, 98
steady-state systems, 48
steam power plants, 130
steam trap, 130
stopping sight distance, 101, 102
straight line, 3, 80
straight line motion, 25
strength reduction factors-reinforced concrete, 94
stress and strain, 34
stress, pressure, and viscosity, 38
stresses in beams, 35
stresses in spur gears, 135
stress-strain curve for mild steel, 33
stripping section, 90
structural analysis, 94
structural steel design, 95
structural steel design definitions, 96
subscripts, 79
superelevation of horizontal curves, 102
superheated water tables, 54
surface factor, $\mathrm{k}_{\mathrm{a}}, 131$
surface tension and capillarity, 38
switching function terminology, 114
systems of forces, 22

T

tabulated characteristics, 110
tangential and normal components, 24
tangential and normal kinetics for planar problems, 25
Taylor Tool life formula, 120
Taylor's series, 8
t-beams-concrete design, 95
t-distribution table, 12
temperature factor, $\mathrm{k}_{\mathrm{d}}, 131$
temperature-entropy (T-s) diagram, 51
tension members-structural steel design definitions, 96
test
for a point of inflection, 14
for maximum, 14
for minimum, 14
testing methods, 70
tests for out of control, 116
thermal conductivity, 59
thermal deformations, 33
thermal energy reservoirs, 50
thermal processing, 70
threaded fasteners, 132
design factors, 132
fatigue loading, 132
three dimensions, 23
throttling valves \& throttling processes, 48
to evaluate surface or intermediate temperatures, 58
torsion, 35
torsional free vibration, 28
total material balance, 90
traffic flow relationships $(q=k v), 103$
transformers, 75
transient conduction using the lumped capacitance method, 61
transportation, 101
transportation models, 103
ranspose, 6
transverse and radial components for planar problems, 24
Trapezoidal Rule, 21, 105
trigonometry, 5
turbines, pumps, compressors, 48
turbulent flow, 60
turbulent flow in circular tubes, 63
turns ratio, 75
two dimensions, 23
two work centers, 119
two-body problem, 61
two-film theory (for equimolar counter-diffusion), 91
two-stage cycle, 125
type of spring ends, 133
typical fan curves, 127

U

ultimate strength design-reinforced concrete, 94
underdamped, 78
uniaxial loading and deformation, 33
uniaxial stress-strain, 33
unidirectional diffusion of a gas through a second stagnant gas $b\left(n_{b}=0\right), 91$
unified soil classification system, 93
unit normal distribution table, 11
units, 72
units conversion, 99
unsteady state diffusion in a gas, 91
US civilian body dimensions, female/male, for ages 20 to 60 years, 122
values of $t_{\alpha, n}, 12$
vapor-liquid equilibrium, 88
vapor-liquid mixtures, 50
variable loading failure theories, 130
vectors, 6
velocity ratio, 135
venturi meters, 43
vertical curve formulas, 106
voltage, 72
volumetric efficiency, 129
W
wastewater treatment, 98
water treatment, 98
water, properties, 44
Weir formulas, 101
wind rose, 104
work and energy, 25
work sampling formulas, 120
yielding, 97

Z
zero-order reaction, 89
z-transforms, 20

[^0]: - Van Vlack, L., Elements of Materials Science \& Engineering, Copyright © 1989 by Addison-Wesley Pub.

[^1]: ${ }^{1}{ }^{1}$ Harris, C.E., M.S. Pritchard, \& M.J. Rabins, Engineering Ethics: Concepts and Cases, Copyright © 1995 by Wadsworth Publishing Company, pages 27-28

[^2]: LIQUID MOLE FRACTION OF MORE VOLATILE COMPONENT

