Angry Hacking

How angr pwned CTFs and the CGC

THE GOMPUTER SECURITY QROUP AT UGSE

Zardus Fish

rhelmot nezorg

<)o
She

salls kereoz

Motivation 6 mins
Fundamentals of angr 3 mins
Pure awesomeness
Live demos 20 mins
Symbolic execution
Static analysis
Emulation
angr applications 10 mins
Rop gadget finder
Binary diffing
Cyber Grand Challenge
Open source! 3 minutes
http://angr.io
Credits

Why angr?

BAP
radare2
rdis
amoco
BARF BitBlaze
. insight
Triton
PySysEmu
miasm

CodeReason

SemTrax

Bindead

paimei

2005 Hex-Rays was founded
2007 Hex-Rays Decompiler 1.0
2009 Hex-Rays IDA 5.5

2011 Hex-Rays IDA 6.1

2013 Hex-Rays IDA 6.4

2015 ?77

HOW STAN PROUIFERATE:
(eE: A/C CHARGERS, MQQBD ENc%oms INSTANT mIsE:mwe. £

4?! RiDICULOLS! GOON:
WE NEED To DEVELOP
. || ONE UNERSAL STANDARD
SITUATION: || Tiar covers Evervone's | | SITUATION:
THERE ARE USE CASES. e THERE ARE

|4 COMPETING |5 COMPETING

smoreos. || O g STANDPRDS.
AR

Fundamentals of angr

iIPython-accessible
powerful analyses

versatile

well-encapsulated

open and expandable
architecture "independent”

{, .
v Binary Loader

Control-Flow Graph
angr ﬁ Static Analysis Routines Data-Flow Analysis
Value-Set Analysis

ﬁ Symbolic Execution Engine

ARE YOU READY FOR THE ANGRY POWER?

Victim binary

Symbolic execution

"How do | trigger path X or condition Y?"

. Dynamic analysis

d Input A? No. Input B? No. Input C? ...

(d Based on concrete inputs to application.
d (Concrete) static analysis

1 "You can't"/"You might be able to"
(J Based on various static techniques.

We need something slightly different.

"How do | trigger path X or condition Y?"

1. Interpret the application.

2. Track "constraints"” on variables.

3. When the required condition is triggered,
"concretize" to obtain a possible input.

Constraints

X >=10 Concretize X =42

x <100

Constraint solving:

Jd Conversion from set of constraints to set of
concrete values that satisfy them.
Jd NP-complete, in general.

X = 1nt (1nput())
1f x >= 10:
1f x < 100:
print "Two!"
else:
print "Lots!"
else:

print "One!™

X = 1int (input())

1if x >= 110:
1f xI< 100:
print "Two!"
State A
else:
print "T,ots!" Variables
. X =777

else:

print "One!™" Constraints

X = 1int (input())
if x >=|10:
if x|< 100:
print "Two!"
else:
print "Lots!"
else:

print "One!"

State A

Variables
X =777

Constraints

State AA State AB
Variables Variables
X=72?? X =277
Constraints Constraints

x<10 x>=10

X = 1int (input())
if x >=|10:
if x|< 100:
print "Two!"
else:
print "Lots!"
else:

print "One!™"

State AA

Variables
X =777

Constraints
x<10

State AB

Variables
X =777

Constraints

x>=10

X = 1int (input())
if x >=|10:
if xI< 100:
print "Two!"
else:
print "Lots!"
else:

print "One!™"

State AA

Variables
X =777

Constraints
x<10

State ABA

Variables
X =777

Constraints

x>=10
X <100

State AB
Variables

X =777

Constraints

x>=10

State ABB

Variables
X =777

Constraints

x>=10
x >=100

X = 1int (jInput())
if x >=|10:
if x'< 100:
print "Two!"
else:
print "Lots!"
else:

print "One!™"

State ABA
Variables

X =777

Constraints

x>=10
X <100

Concretized ABA

Variables
x =99

Static analysis

Memory access checks Type inference
Variable recovery Range recovery

Wrapped-interval analysis

Value-set analysis

Abstract interpretation

What a value-set looks like

{
(global, (4[0x601000, 0x602000], 32)),
(stack _0x400957, (8[-Oxc, -0x4], 32))
}
global stack_0x400957
0x601000, 0x601004 - Oxc

0x601008, 0x60100c - Ox4

angr applications

ROP gadget finder

Binary diffing

Cyber Grand Challenge

POV

exploit
Cyber
CB Reasoning
vulnerable program
System
RB

patched program

PCAP

Autonomous
processing

Autonomous
vulnerability
scanning

CB

Autonomous
patching

Shellphish CRS

Test cases
POV
Autonomous

Proposed service

POVs -

resiliency
RB

Proposed

RBs

Vulnerability Discovery via SymExec

Program
@ﬂ Symbolic
Symbollc execution engine POVs
inputs :
Security
policy checker
Security

policies

CALM

ITS TIME FOR

A
DEMO!

Open Source

Major contributors:

- Zardus - Yan Shoshitaishvili
- Fish - Ruoyu Wang

- kereoz - Christophe Hauser
- rhelmot - Andrew Dutcher

- nezorg - John Grosen
- salls - Chris Salls

Special thanks to:

- our professors

- DARPA VET Project

- DARPA Cyber Grand Challenge

| CLE Loads Everything

angr

10011
00111

11010

Program State

Claripy SimuVEX

Loaded
Binary

PYVEX

VEX'IR

Open angr!

> http://angr.io
-> https://github.com/angr
=> angr@lists.cs.ucsb.edu

Pull requests, issues, questions, etc super-welcome!
Let's bring on the next generation of binary
analysis!

http://angr.io
http://angr.io
https://github.com/angr
https://github.com/angr
mailto:angr@lists.cs.ucsb.edu
mailto:angr@lists.cs.ucsb.edu

Draft and backups

motivation (keep it quick) - 6 mins
o "In the beginning, there was IDA. However, as the field of binary security advanced,
there is now ... still IDA?"
o We need something more!
o There are a few solutions, but they all suffer from lacking one of: cross-platform,
open, active, usable.
angr fundamentals - 3 mins
o power (state-of-the-art)
o ease of use (abstraction)
o expandable, cross-platform, blah blah
main components - 20 minutes
o introduce a demo: some combination of a crackme and a pwnable
o symbolic execution (slides + demo)
m the demo should get us past the crackme portion using angr's symbolic
execution
o VSA (slides + demo)
m the demo should allow us to identify an overflow to pwn
o dynamic execution (slides + demo)
m we'lldemo a shellcode that's used to exploit the overflow
angr applications - 10 minutes
o rop gadget finder (demo)
o binary diffing
o Cyber Grand Challenge
open source! - 3 minutes
o http://angr.io

