
1

Acquiring .NET Objects from the Managed Heap
Topher Timzen

Southern Oregon University Cybersecurity Research Lab

F

ABSTRACT

This paper will describe how to use instantiated
objects on the .NET CLR Managed Heap as if
they were declared locally. It will be shown
that by referencing an object pointer from the
Managed Heap, an attacker can take control
over any object being used in an application.
Reflective techniques will be discussed and a
signature will be introduced to find objects on
the Managed Heap.

1 INTRODUCTION

The .NET Framework uses the Common Lan-
guage Runtime, CLR, to manage the execution
of .NET programs. There are 4 major versions of
the CLR available and multiple .NET versions
within each [2].
CLR Version	.NET Version
�������������	���������������
1 . 0	1 . 0
1 . 1	1 . 1
2 . 0	2 . 0 , 3 . 0 , 3 . 5
4 . 0	4 . 0 , 4 . 5

For the purpose of this paper, only CLR
versions 2.0 and 4.0 will be discussed as the
author feels 1.0 and 1.1 are not relevant for
attacking modern applications.

Using Reflection [4] key information about
an object can be discovered. A plethora of
information in objects is useful for attacking
or reverse engineering such as a list of fields,
instance methods, static methods and variables
that an object contains. Furthermore, once an

object is locally accessible an attacker can ma-
nipulate it in any way they want.

Any object can be instantiated using reflec-
tion. While that local reference is not neces-
sarily usable by an attacker, it can be used to
reveal both the signature of all objects of that
class and the memory location of the Managed
Heap, bypassing any Address Space Layout
Randomization, ASLR. All instantiated objects
from a specific class share the same Method
Table (MT) pointer, which will be used later to
locate objects on the Managed Heap.

Once the MT for a specific class is known
and the Managed Heap discovered, an attacker
can scan through the Managed Heap to locate
all objects instantiated from a specific class and
use them locally. To showcase this technique
a sample application written in .NET will be
utilized and compiled in x86 and x64 with both
the 2.0 and 4.0 CLR.

2 FINDING OBJECTS WITH WINDBG

In order to understand what objects look like
in memory WinDbg was used frequently in the
author’s analysis. Using the SOS Debugging
Extension (SOS.dll), WinDbg allows the user to
debug managed applications (programs using
the CLR)[3]. The most useful extensions to lo-
cate and understand objects are dumpheap and
dumpobj. The following WinDbg results are for
the 2.0 CLR in x86, but the same techniques
apply for all runtimes and x64.

2

Running dumpheap will show all of the ob-
jects on the Managed Heap, where each object
lives on the heap, the size of the object and
its MT pointer. Most of the addresses from
dumpheap for the following example are within
the range 0x02721000 to 0x0284f35c with a few
appearing from 0x03721000 to 0x037f0578. So
far, objects of concern have appeared within
the lesser range as newly created objects are
allocated there.
0:009 > !dumpheap
Address MT Size
[snip]
0284 c1b8 6 e3da388 36
0284 c1dc 6 b2b390c 72
0284 c224 6b2b3ba0 16
0284 c234 6 e3da4f8 16
0284 c244 6 e3d9fb4 32
0284 c264 6b2b3ba0 16
[snip]
t o t a l 25237 o b j e c t s

Furthermore, this extension will show the
statistics for each object instantiated which in-
cludes the number of them present on the Man-
aged Heap.
0:009>!dumpheap
[snip]
S t a t i s t i c s :

MT Count T o t a l S i z e Class Name
[snip]
6 db6ce80 1 100 System . Diagnost i cs . F i l e V e r s i o n I n f o
6 b2aa3e4 5 100 System . Windows . Forms . RichTextBox+

OleCallback
6 af488e8 5 100 System . Configurat ion .

ConfigurationSchemaErrors
007 c078c 5 100 GrayStorm . she l l co de . dataBox

All objects of the same type share the same
Method Table, which provides metadata about
Object Instances [1]. Using the -mt parameter
on dumpheap and giving it an MT address from
above, all objects using that Method Table are
shown.
0:008> ! dumpheap �mt 007 c078c
Address MT Size
027 fb5b0 007 c078c 20
027 fb5e4 007 c078c 20
027 f b 5 f 8 007 c078c 20
027 fb60c 007 c078c 20
027 f b f 8 4 007 c078c 20
t o t a l 5 o b j e c t s
S t a t i s t i c s :
MT Count T o t a l S i z e Class Name

007 c078c 5 100 GrayStorm . s he l l co de . dataBox
Tota l 5 o b j e c t s

Now all objects instantiated from
GrayStorm.shellcode.dataBox are shown as
they all pointed back to the MT at 0x007c078c.
dumpobj can now be used on the address of an

object to show its fields and more information
about it.
0:008> ! dumpobj 027 fb5b0
Name: GrayFrost . sh e l l cod e . dataBox
MethodTable : 007 c078c
EEClass : 00336 fd4
S ize : 20(0 x14) bytes

(C:\ bin\GrayFrost . exe)
F i e l d s :
MT F i e l d O f f s e t Type VT Attr Value Name

6 e3e0d48 40001 ac 4 System . S t r i n g 0 i n s t a n c e 027 fb45c name
6 e3e37b8 40001ad 8 System . Byte [] 0 i n s t a n c e 027 fae0c data
6 e3e2f94 40001 ae c System . I n t 32 1 i n s t a n c e 0

indexToStartCleaning

The first four bytes of the above object hold
a pointer back to its Method Table.
0:008> db 027 fb5b0
027 fb5b0 8 c 07 7 c 00 5 c b4 7 f 02�0c ae 7 f 02

00 00 00 00 . . | . \

Reconstructing the whole Method Table and
Object Instance is not important because once
a reference object is available in a local scope
reflection can be used and anything about that
object can be seen. The size of an Object In-
stance is necessary to create a robust scanner
and the size is the second four byte block of a
MT as shown by Kommalapati and Christian
[1].

Using the knowledge that an instance ob-
ject’s first four bytes are the Method Table and
all like objects share the same one, an attacker
can find the location of the heap in memory and
brute force it by looking for a Method Table
reference they require to obtain local object
references.

3 FINDING OBJECTS AT RUNTIME
In order to find objects at runtime, the exact
location of the Managed Heap needs to be
discovered. To discover this location a signa-
ture for the specific kind of object for which
one is searching needs to be instantiated. Once
instantiated, the Managed Heap location can
be found as well as the MT for the object.
Utilizing Reflection the constructor of a class
can be called to instantiate a local reference.

3

Type r e f c = typeof (GrayFrost . testMethods) ;
Constructor Info c t o r = r e f c . GetConstructor

(Type . EmptyTypes) ;
o b j e c t wantedObject = c t o r . Invoke (new o b j e c t

[] { }) ;

Once we have a local reference we are able
to discover its raw memory address by manip-
ulating a method’s stack frame (Keep in mind
that the details of obtaining the raw IntPtr to
an object differs between x86 and x64 assembly
because of how they handle argument passing).
For both architectures, unsafe code will be uti-
lized in C# (which is still usable in a target
application compiled disallowing unsafe code)
to obtain a raw object pointer.

3.1 x86
In order to obtain the object pointer, an IntPtr
will be declared locally and then dereferenced
to obtain the objects pointer in memory by
traversing through the current stack frame.
publ ic s t a t i c I n t P t r getObjectAddr (o b j e c t

wantedObject)
{

I n t P t r o b j P t r = I n t P t r . Zero ;
unsafe
{

o b j P t r = ⇤(& o b j P t r � 3) ;
}
re turn o b j P t r ; //0x260a4c8

}

objPtr will now contain the address of the
wantedObject. In the .NET CLR Object In-
stances are pointers back to their Object Table
on the Managed Heap, which means we now
know the location of the heap.
0:008> ! do 260 a4c8
Name: GrayFrost . testMethods
MethodTable : 00286 d34
EEClass : 00382348
S ize : 12(0 xc) bytes
(C:\ bin\GrayFrost . exe)
F i e l d s :

MT F i e l d O f f s e t Type VT Attr Value Name
6 e0437b8 4000002 8 System . Byte [] 0 s t a t i c 0260 a3fc o b j e c t P t r

Now that the address of the object table is
known and there is a reference to the Method
Table location, the first four bytes in memory
of the object at memory location 0x260a4c8, the
Managed Heap can be brute-forced for other
objects matching that signature. The below
pseudocode is the author’s approach to brute
forcing the Managed Heap. For searching at a
negative offset the size field (from the Method

Table) cannot be utilized and the addresses are
read linearly.
While va l id memory at p o s i t i v e o f f s e t from

o b j e c t
Obtain o b j e c t s i z e and jump to next o b j e c t
Check f i r s t four bytes f o r matching Method

Table
IF Method Tables match

Add o b j e c t I n t P t r to l i s t
While va l id memory at negat ive o f f s e t from

o b j e c t
Check each 4 byte MT address to see i f i t s

address i s the same as the wantedObjects
IF MethodTables match

Add o b j e c t I n t P t r to l i s t

Once the brute forcing is finished a listing of
all object IntPtrs of GrayFrost.testMethods are
present and need to be converted back into the
object type. Again utilizing stack manipulation
.NET can be tricked into placing an IntPtr into
an object pointer because as previously shown
objects are IntPtrs. The below code will take an
IntPtr and place it into a local object.
publ ic s t a t i c o b j e c t GetInstance (I n t P t r ptrIN)
{

o b j e c t r e f e r = ptrIN . GetType () ;
I n t P t r o b j P t r = ptrIN ;
unsafe
{

⇤(& o b j P t r � c lrSub) = ⇤(& o b j P t r) ;
}
re turn r e f e r ;

}

3.1.1 CLR 2.0 vs CLR 4.0
I discovered for both the 2.0 and 4.0 CLR on x86
the wantedObject parameter was at a negative
stack offset of 3 from objPtr. Also, the clrSub
offset is 1 for CLR 2.0 and 2 for CLR 4.0 to place
an IntPtr into an object.

4

3.2 x64
By placing three local variables in a method,
see below, I discovered that the address of the
object will become present. If there are less than
three local arguments, the CLR does not place
the object pointer in a reachable range.

publ ic s t a t i c I n t P t r getObjectAddr64 (o b j e c t
wantedObject)

{
I n t P t r o b j P t r = (I n t P t r) 4 ;
o b j e c t r e f e r = wantedObject ;
I n t P t r o b j P t r 2 = (I n t P t r) 8 ;
unsafe
{

o b j P t r = ⇤(& o b j P t r + clrSub) ;
}
re turn o b j P t r ;

}

Once the objPtr is known, the x86 pseudo
code for finding objects will also work. For
getting an object back from an IntPtr, the below
code can be used.
publ ic s t a t i c o b j e c t GetInstance64 (I n t P t r

wantedObject)
{

I n t P t r o b j P t r = wantedObject ;
o b j e c t r e f e r = wantedObject . GetType () ;
I n t P t r o b j P t r 2 = (I n t P t r) 8 ;
unsafe
{

⇤(& o b j P t r + 1) = ⇤(& o b j P t r) ;
}
re turn r e f e r ;

}

3.2.1 CLR 2.0 vs CLR 4.0
There are no differences in the above methods
for CLR 2.0 and 4.0 for x64 assembly.

4 CONCLUSION
An attacker now has the ability to instantiate
any object of their choice, brute-force the Man-
aged Heap for other objects instantiated from
the same class, and use them as if they were de-
clared locally. Using Reflection, all of the fields
and properties of an object can be viewed and
altered and instance methods can be called. The
underlying power for .NET attack chains using
constructed objects is massive as attackers can
instantiate any object, find all other objects on
the heap that match it and do anything with
them.

REFERENCES
[1] Hanu Kommalapati and Tom Christian, Drill Into .NET

Framework Internals.
[2] Microsoft Corporation. Common Language Runtime

(CLR).
[3] Microsoft Corporation. SOS.dll (SOS Debugging Extension)
[4] Jon. Reflections Hidden Power. May 2002.

