
 
 
 

Hijacking Arbitrary .NET 
Application Control Flow 

  
Topher Timzen 



Security Researcher, Intel 
 

Security Trainer 
 
TopherTimzen.com 

 
@TTimzen  
 
 

#whoami 

https://www.tophertimzen.com/
https://twitter.com/TTimzen
https://twitter.com/TTimzen


Overview 
�Runtime Attacks 

 
�Modify Control Flow 

 
�Machine Code Editing 
  



Tools Released 

Use .NET as a pivot to attack 

Using Objects on the Heap 

Why are we Here? 



CLR Attacks 
Controlling the Common Language 

Runtime 
Accessing raw objects on Managed Heap 
 
Manipulate AppDomains 
• Controlling all Loaded Code 
• Controlling Just-In-Time Compilation 



Attack With ASM 
Manipulate Resources 
 
Attack methods at ASM level 
 
Alter application control flow 



Runtime 
.NET Process 
 CLR (2.0/4.0) 
  Assemblies 
   Objects 
    Properties 
    Fields 
    Instance Methods 
   Classes 
    Methods 
    Logic 
      



Demo 



Gray Frost 
& 

Gray Storm 

The Tools 



Gray Frost 



Gray Frost 
Payload delivery system  
C++ .NET CLR Bootstrapper 
 Creates or injects 4.0 runtime 
 Capability to pivot into 2.0 runtime 
    Contains raw payload 
2 Rounds 

�GrayFrostCpp 
�GrayFrostCSharp  

• C# Payload 
  



Round 1 
.NET Process 



Round 1 

Mscoree 

GrayFrostCpp 



Round 1 

GrayFrostCSharp 

GrayFrostCpp 



Round 2 
.NET Process 



Round 2 
.NET Process 

payload void 
main() 

GrayFrostCSharp 



Round 2 
.NET Process 

Payload 



Pivoting between .NET runtimes 

.NET Process 



Pivoting between .NET runtimes 

Mscoree 

GrayFrostCpp 



Pivoting between .NET runtimes 

GrayFrostCSharp 

GrayFrostCpp 



Pivoting between .NET runtimes 

GrayFrostCSharp 

GrayFrostCpp 



Pivoting between .NET runtimes 

GrayFrostCSharp 

GrayFrostCpp 



Gray Storm 



Gray Storm 
Reconnaissance and attack payload 
In-memory attack platform 
Features 
�Attacking the .NET JIT 
�Attacking .NET at the ASM level 
�ASM and Metasploit payloads 
�Utilize objects on the Managed Heap  

 
 



Gray Storm Usage 



Controlling the JIT 
Method Tables contain address of JIT 

stub for a class’s methods. 
 
During JIT the Method Table is referenced  
 
We can control the address 
  Lives after Garbage Collection  



Controlling the JIT 



Controlling the JIT 



Control Flow Attacks 
.NET uses far and relative calls 
�0xE8; Call [imm] 
� 0xFF 0x15; Call dword 

segmentRegister[imm] 
 
relCall = dstAddress - (currentLocation+ lenOfCall) 
  



ASM Payloads 
Address of a method known through 

Reflection 
 
Overwrite method logic with new ASM 
 
Steal stack parameters 
 
Change events  
 
 



ASM Payloads 
Change return TRUE to return FALSE 
�Password validation 
�Key validation 
�Licensing validation 
�SQL Sanitization  

Destroy security Mechanisms 
Overwrite logic 
Update Mechanisms 
  



ASM Payloads 



ASM Payloads 
Metasploit 

 
Hand Rolled 

 
Portable Environment Block (PEB) changes  

 



Portable Environment Block 

http://www.tophertimzen.com/blog/shellcodeDotNetPEB/ 

http://www.tophertimzen.com/blog/shellcodeDotNetPEB/


Object Hunting in Memory 



Object Hunting in Memory 

Objects are IntPtrs  
Point to Object Instance on Managed Heap 

All instantiated objects of the same class share 
the same Method Table 

 
Reflection Object Hunting 

Win 



Finding Objects at Runtime 
i. Construct an object and find location 

of Managed Heap 
ii. Signature instantiated type 
iii. Scan Managed Heap for object pointers 
iv. Convert object pointers to raw objects 
v. ???? 
vi. PROFIT  
  



Finding Objects at Runtime 
i. Construct an object and find location 

of Managed Heap 
ii. Signature instantiated type 
iii. Scan Managed Heap for object pointers 
iv. Convert object pointers to raw objects 
v. ???? 
vi. PROFIT  



Construct an Object 
Use Reflection to invoke a constructor 
 
Can instantiate any object  
 
If a constructor takes other objects, 

nullify them 
 
 
 

 
https://gist.github.com/tophertimzen/010b19fdbde77f251414 

https://gist.github.com/tophertimzen/010b19fdbde77f251414


IntPtr = 024e9fe8  

024e9fe8 (Object) 

00000005  

00000001  

00000000  

IntPtr = 5 

STACK 

024e9fe8 (Object) 
L 
 
 
 
 
 
H 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d 

Find location of Managed Heap 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d


IntPtr = 024e9fe8  

024e9fe8 (Object) 

00000005  

00000001  

00000000  

IntPtr = 5 

STACK 

Managed Heap 024e9fe8 (Object) 
L 
 
 
 
 
 
H 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d 

Find location of Managed Heap 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d


IntPtr = 024e9fe8  

024e9fe8 (Object) 

00000005  

00000001  

00000000  

IntPtr = 5 

STACK 

024e9fe8 (Object) 

L 
 
 
 
 
 
H 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d 

Find location of Managed Heap 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d


IntPtr = 024e9fe8  

024e9fe8 (Object) 

00000005  

00000001  

00000000  

STACK 

L 
 
 
 
 
 
H 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d 

Find location of Managed Heap 

https://gist.github.com/tophertimzen/812aa20dbe23cb42756d


Finding Objects at Runtime 
i. Construct an object and find location 

of Managed Heap 
ii. Signature instantiated type 
iii. Scan Managed Heap for object pointers 
iv. Convert object pointers to raw objects 
v. ???? 
vi. PROFIT  



Signature instantiated type 

Object Instances contain a Method Table 
pointer to their corresponding type. 
 
 

(x86)  
 Bytes 0-3 are the Method Table (MT) 
  Bytes 4-7 in MT is Instance Size 
 
   

0:009> dd 024e9fe8   
024e9fe8  00774828 0000038c 00000001 00000000 



Signature instantiated type 

Object Instances contain a Method Table 
pointer to their corresponding type. 
 
 

(x64)  
 Bytes 0-7 are the Method Table (MT) 
  Bytes 4-7 in MT is Instance Size 
 
   

0:008> dd 00000000024e9fe8  
00000000`0286b8e0  ea774828 000007fe  



Finding Objects at Runtime 
i. Construct an object and find location 

of Managed Heap 
ii. Signature instantiated type 
iii. Scan Managed Heap for object pointers 
iv. Convert object pointers to raw objects 
v. ???? 
vi. PROFIT  



Scan Managed Heap 
Scan down incrementing by size of object 
 
Scan linearly up to top of heap 
 
Compare object’s Method Table to the 

reference 
 
If they match, get IntPtr address of object 

 



Finding Objects at Runtime 
i. Construct an object and find location 

of Managed Heap 
ii. Signature instantiated type 
iii. Scan Managed Heap for object pointers 
iv. Convert object pointers to raw objects 
v. ???? 
vi. PROFIT  



Convert object ptr -> raw obj 

STACK 

Refer (System.IntPtr) 

pointer(024ea00c ) pointer(024ea00c ) 

L 
 
H 

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b 

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b


Convert object ptr -> raw obj 

STACK 

Refer (System.IntPtr) 

pointer(024ea00c ) 

pointer(024ea00c ) L 
 
H 

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b 

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b


Convert object ptr -> raw obj 

Refer (GrayStorm.testClass) 

pointer(024ea00c ) 

STACK 

L 
 
H 

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b 

https://gist.github.com/tophertimzen/1da2b0aab6245ed1c27b


Finding Objects at Runtime 
i. Construct an object and find location 

of Managed Heap 
ii. Signature instantiated type 
iii. Scan Managed Heap for object pointers 
iv. Convert object pointers to raw objects 
v. ???? 
vi. PROFIT  



???? 



PROFIT  



Superpowers and Things? 

�Change Keys 
 

�Change Fields / Properties 
 

�Call Methods 
�With arguments! 

 



Constructing Attack Chains 



How to construct attack chains 

Gray Wolf / IL Decompiler  
� Find Methods, Fields & Properties of 

interest 
� Locate meaningful objects 
� Discover high level control flow 

 

Gray Storm “Debugging” functionality 
� Breakpoint at constructors or methods 

from Method Pointers 
� Use with WinDbg  

 
 
 



Hybrid .NET/ASM Attacks 

�Hybrid C#/ASM code in .NET 
 
�Encrypting .NET payloads and 

unwinding 
 
�Encrypting ASM Payloads 
  



Payload System 
C# is easy 
 
Can use Gray Frost in any 

application  
 
Low and High level gap is easy 
 



.NET Hacking Space 
Small 
 
Few tools 
  Mostly hacking WoW 
 
Previous DEF CON talks 
  DEF CON 18 & 19 - Jon McCoy 

 



Conclusion 
�Arbitrary .NET applications can 

be injected and changed  
�New .NET attack possibilities 
�New tools that support 

automation  
�Get Gray Frost and Storm 

github.com/graykernel 
 

https://github.com/graykernel
https://github.com/graykernel


Questions? 
Contact Me 

�@TTimzen  
�https://www.tophertimzen.com 

 

Get Gray Frost and Storm 
�github.com/graykernel 

 

White Papers 
�Hijacking Arbitrary .NET Application Control Flow 
�Acquiring  .NET Objects from the Managed Heap 

https://twitter.com/TTimzen
https://twitter.com/TTimzen
https://www.tophertimzen.com/
https://github.com/graykernel
https://github.com/graykernel

