
Saif El-Sherei & Etienne Stalmans

What is Fuzzing??

 Fuzzing is feeding an Application with
malformed input in hope to find errors and
faults in the application code and with a bit
of luck these faults can lead to exploitable

vulnerabilities

Basic History of Fuzzing
• 1988-199:

• Boris Beizer Syntax Testing.
• Barton Miller Fuzz: An Emprical Study of Robustness.

• 1999 – 2001 OUSPG PROTOS SNMP, HTTP, SIP, H.323, LDAP, etc …
• 2002 Dave Aitel SPIKE block based fuzzing. Codnemicon first commercial

fuzzer.
• 2004 Browser Fuzzing start lcamtuf‟s MangleMe.
• 2005 FileFuzz , SPIKEfile NotSPIKEfile File format fuzzing.
• 2006 Month of Browser Bugs (MoBB) HD Moore relases a browser bug

every day for a month release of CSSDIE, COMRaider and Axman and
hamachi.

• 2011 Lcamtuf decided to revolutionize Browser fuzzing in 2011 by releasing
cross_fuzz. In his own words "a surprisingly effective but notoriously
annoying cross-document DOM binding fuzzer that helped identify about
one hundred bugs in all browsers on the market - many of said bugs
exploitable - and is still finding more." it is based on ref_fuzz which he
developed in 2008.

• 2014 lcamtuf‟s introduces American Fuzzy lop (Afl) Evolutionary fuzzer.

Fuzzing Types And Techniques

Fuzzing methodology

Monitor for Memory corruption Errors.

Fuzz target

Generate Data

Identify Inputs

Identify Target

Fuzzing Types

• Mutation/Non-Intelligent Fuzzing
Randomly apply mutation algorithms to the
supplied input to generate several test cases
without any concern to the target format.
• Generation/Intelligent Fuzzing
Utilize grammar to model a certain format
specification and randomly generate semi-valid
test cases. to minimize fault conditions and
generate test cases that are accepted by the
target.

Fuzzing Types Contd..

• Evolutionary Fuzzing
 Combining either types of fuzzing with code and
binary instrumentation tools, to monitor code paths and
generate test cases based on the results of the
instrumentation to achieve least number of test cases
with highest amount of code coverage and branches
explored.

 In Fewer words lcamtuf‟s American fuzzy lop.

Tools of the Trade - Memory Error
Detectors

Memory Error Detectors poisons memory areas
after memory allocations and after the memory is
free-ed. It monitors access to these parts in
memory and returns detailed error information.
Windows:
• PageHeap which is part of Gflags part of

windows debugging toolkit can be applied on
some windows processes.

Linux and OSX:
• Google's Address Sanitizer (Asan) is a clang

compiler plugin that can be implemented during
compilation time of any linux or OSX application.

Tools of the Trade - Fuzzing Harnesses

Fuzzing harnesses are not themselves
fuzzers but they are tools that run the target
process feed it the generated test case and
monitor the process for crashes.
Windows:
• Grinder by Stephen Fewer.
Linux and Mac OSX:
• Node Fuzz by Atte Kettunen of OUSPG.

Introducing

Wadi – Fuzzing Harness
Atte Kettunen's of OUSPG NodeFuzz:
• Nodefuzz is a fuzzing framework that works on Linux,

And Mac OSX.
• It is coded by Atte Kettunen of OUSPG using Nodejs.
• It works by instrumenting the browser using ASan. and

a test case generation module to feed the browser the
test case through web sockets.

• The modules are not provided as part of NodeFuzz you
can code your own. it is a pretty simple process.

• NodeFuzz is what we are currently using. with our own
custom modules.

Wadi – Memory Error Detector
Google's AddressSanitizer (ASan):
• AddressSanitizer (ASan) is a clang compiler plugin

Developed By Google which allows fast memory error
detection.

• The run-time library replaces the malloc and free functions.
The memory around malloc-ed regions (red zones) is
poisoned. The free-ed memory is placed in quarantine and
also poisoned. Every memory access is monitored and if
address is poisoned a detailed error is returned.

• It Helps find use-after-free and heap,stack,global}-buffer
overflow bugs in C/C++ programs. For Linux and mac OSX

• Google and Mozilla both releases ASan pre built binaries for
testing.

What is Wadi?

• Exploring new tributaries in browser fuzzing.
• Grammars are used to describe how browsers

should process web content, Wadi turns that
around and uses grammars to break browsers.

• Wadi already responsible for a handful of high
severity bugs in browsers.

Why Wadi?

• From Chrome, to IE, Wadi identifies
exploitable bugs in new and existing web APIs.

• The talk introduces Wadi and walks the
audience through the steps taken to go from
LL(1) grammar to fuzz test cases and browser
crashes

A simple Intro to The DOM
Interfaces are types of objects that allow web applications
and web browsers to programmatically access and interact
with them to access their members.

The Document Object Model (DOM):
The Document Object Model provides a standard set of
objects for representing HTML and XML documents, a
standard model of how these objects can be combined, and
a standard interface for accessing and manipulating them.

Web API:
When writing code for the Web using JavaScript, there are
great many APIs available. that you may be able to use
developing Web applications. ex: speech, webaudio,
gamepad, canvas, webgl, animation, etc..

Wadi Architecture

• Wadi is 3538 lines of code.
• 2932 of these are grammar for test case

generation.
• Wadi works as a NodeFuzz Module and it

is used to fuzz Chromium and Firefox
Asan builds.

• Already responsible for a number of bugs.

What is Grammar ?
Grammar in English explains how a sentence is
constructed. The same can be said about
Grammars in compilers it describes how the
language syntax is constructed the input is parsed
based on a set rules “Productions” and tokens
defined in the grammar definitions. In fuzzing
grammar is used to help the fuzzer generate valid
test cases.
w3c have provided us with a nice interface definition
language(IDL) that defines browser technology
interfaces this is utilized by the fuzzer to be able to
create and fuzz all attributes and methods used by
them.

Grammar – IDL Interface
According to the IDL definitions an interface is an object
with a set of interface members these can be constants,
attributes, or functions. Each interface has a unique
identifier and inherits from a parent interface if needed.

• LL(1) Interface Definition Grammar:

 "interface" identifier Inheritance "{" InterfaceMembers "}" ";“

Grammar – IDL Interface Example

• Identifier: Text
• Inheritance: CharacterData

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
 Text replaceWholeText(in DOMString content)
 raises(DOMException);
 readonly attribute boolean isElementContentWhitespace;
 attribute DOMString wholeText;
};

Grammar – IDL Interface Members
An interface member can be a constant, attribute or function as mentioned
before. What we are interested in are the attributes and functions of an
interface object. Taking a closer look at how interface members are defined in
the IDL specification.
• InterfaceMembers:
Attributes: isElementContentWhitespace, wholeText
Functions: splitText(), replaceWholeText()
LL(1) Grammar Interface Member Definition:

InterfaceMember → Const
 | AttributeOrOperation

AttributeOrOperation → "stringifier" StringifierAttributeOrOperation
 | Attribute
 | Operation

Grammar – IDL Attributes
An attribute is a declared interface member with an identifier
whose value can be retrieved and in some cases changed.
LL(1) Grammar Attribute Definition:

Attribute → Inherit ReadOnly "attribute" Type identifier ";"

Attributes of Example Interface:

readonly attribute boolean isElementContentWhitespace;

 attribute DOMString wholeText;

Identifier Input Type ReadOnly

isElementContentWhitespace boolean True

wholeText DOMString False

Example Interface Attributes:

Grammar – IDL Functions
Functions in the IDL specification is referred to as operations. A function
is an interface member that defines behavior that can be invoked on
objects implementing the interface.
LL(1) Grammar Attribute Definition:

Functions of Example Interface:

Example Interface Functions:

Operation → Qualifiers OperationRest

OperationRest → ReturnType OptionalIdentifier "(" ArgumentList ")" ";"

 Text replaceWholeText(in DOMString content)

 Text splitText(in unsigned long offset)

Identifier Number of Args Arg Identifier Arg Type Return Value
replaceWholeText One content DOMString Text
splitText One offset unsigned long Text

Grammar – Fuzzing Grammar
Using the gathered information we can parse the Interface objects in any given
IDL to a JavaScript object containing information about the interface members
to be used by the fuzzer.
There are some main pieces of information gathered from the example
interface mainly the interface identifier (Name), inherited parent interface,
interface members (methods, attributes).
For Attributes and Methods an array of arrays is created with each child array
containing information about a single Attribute or method members of the
respective interface.

A single Attribute array will have three members:

*The Attribute Identifier, *function(s) to generate the expected value type+,’readOnly flag’+

A single Method array will have three members:

*The Method Identifier, *function(s) to generate method parameters and values+,’high flag’+

Grammar – Fuzzing Grammar Contd.
You can code your own functions to generate attribute values and method parameters. Or use the
already available helper functions in NodeFuzz „randoms.js‟ file.
The main Attributes and Methods arrays are concatenated to the parent interface object attributes
and methods arrays to simulate inheritance.

Example Interface as defined in the Fuzzing grammar:

TextInterface = {
 'Name': 'text',
 'Attributes': [
 ['isElementContentWhitespace',[GenerateExpectedValue()],'readonly'],

 ['wholeText',[GenerateExpectedValue()+,’’+
].concat(CharacterDataInterface.Attributes),

 'Methods':[
 ['replaceWholeText',[GenerateExpectedParameters()],'high'],

 ['splitText',[GenerateExpectedParameters()],'high']
].concat(CharacterDataInterface.Methods),
 'tagName':'Text',
 'style':CSS2PropertiesInterface
};

Helper Functions
These are some of the helper functions that are implemented in NodeFuzz
„randoms.js‟ we can implement our own or tweak the ones already available to
our needs these functions are used in generating attributes values, method
parameters and all through the test case generation.

Name Description
randoms() return random number, float value or hex number
rint(num) return a random number limited by parameter.
ra(array) return a random element an array.

arrayWalk(array) return a random element from array if it is a function execute it and retrurn
the return value. if it is a string or an int return the value.

string(num) return a random length string with length based on a random number
limited by the input parameter.

randbool() returns random Boolean.
floatValue(num) return a random float value.
getRandomColor() returns a random color in either hex, hsl, rgbint formats
distanceValue() return a random number or float with distance suffixes like px,%,cm, etc ...
retURI(num) return a random length URL

returnRandomElement()
returns a random element from the list of created elements and either try
to reference a near by object like 'firstChild','nextSibling',etc ... or just return
the element object itself.

Fuzzing Module
Wadi works on grammar created from the IDL that mapped interfaces to
javascript objects using these objects to be able to generate valid JS
statements into a string array. Then output an HTML document with a
script containing the generated test case. The flow of the Wadi is as
follows

Test Case generation – Element
Creation

These are the main and first functions executed by Wadi. It
generates JS statements to randomly create elements from the
available HTML interfaces and inserts random child text nodes.

Name Description
createElement() creates a random element from the list of interfaces and saves a reference to the

object both in fuzzer space and browser space
createTextNode() creates random length text nodes and attach them to random elements in the DOM.
mangleElements() randomly mangles element positions within the document.

Wadi Output:

try { HTML0=document.createElement("EMBED")} catch(e) {}
try { HTML0.id="HTML0"} catch(e) {}
try { createdElements['HTML0']=HTML0} catch(e) {}
try { document.body.appendChild(HTML0)} catch(e) {}

Test Case generation – Element
Creation Contd.

The creation functions will save a references to the created
Element objects to the local fuzzer space objects array
'CreatedElements' to be able to access properties and methods
of the created element. As well as save a reference to the
created object to the browser space to be able to manipulate the
saved references.
The saved object in fuzzer space will have the following structure
for the previous example:

{ 'objName':HTML0,
 'type':'object name',
 'object':Embed interface object reference
};

Test Case generation – Fuzzing
Interfaces Functions

Function Description
fuzzWindowAttribs, randomly set the 'window' interface object attributes.
fuzzWindowMethods, randomly call the 'window' interface object methods.
fuzzStyle, Pick a random element and set a random style property using element.style.

fuzzStyle1,
pick a random style sheet with random reference to element and set random style properties using
insertRule.

fuzzDocumentAttribs, randomly set the 'document' interface object attributes.
fuzzDocumentMethods, randomly call the 'window' interface object methods.

deleteRandomKey, deletes a random refence to the created objects saved in the 'createdElements' object in browser space.

fuzzPLayerMethods,

if no animation player found call the createPlayer() function to create a new animation player and add
reference to it in the createElements object array. if a player exist call a random method from the
animation interface object.

fuzzPlayerAttribs,

if no animation player found call the createPlayer() function to create a new animation player and add
reference to it in the createElements object array. if a player exist set a random attribute from the
animation interface object.

Wadi will then call the function fuzz(num) num being the number of rounds to execute
fuzzer functions. Simply the fuzz() function picks a random function name from the below
list and executes it and return the output JavaScript statement to our string array.

Test Case generation – Wadi Interfaces
contd.

Function Description
MutationObserve, creates a random mutation observer and add reference to it in the createElements object array.

fuzzMutationObserve,
if no mutation observer have been created, call () function if one exists call or set random method or
attribute from the Mutation observer interface object.

createRangeTraversal,
creates a random treeWalker or nodeIterator and add reference to them in the createElements object
array.

fuzzRangeTraversal,
if no range has been created call createRangeTraversal() function. else call or set random method or
attribute from the respective NodeIterator Interface or TreeWalker Interface objects.

fuzzElementsMethods, randomly set the attributes of a randomly selected element from the list of created elements.
fuzzElementsAttribs, randomly call the methods of a randomly selected element from the list of created elements.
addLoop, add a random loop function around js block loops are (for, while, setTimeout, setInterval)
crossRef, try to set object references to a random other ex: HTML0 = HTML1.firstChild

AddEvent,
attach a random event to one of the created elements. creates an event object using createEvent
directive and add reference to the created event object to a list for later use.

dispatchEvt, randomly fires one of the created events.
intfuzz return random function name for use ass callbacks for certain operations
GarColl, force garbage collection.

Test Case generation – preparing the
output script

• Creating Internal callbacks based on the
number of function names returned by
intfuzz()

• Insert the element creation JS block.
• Insert all other object create JS

statements.
• Randomly insert JS statements returned

by fuzz() function.

Sample Wadi Output
<html><head><style></style></head><body></body>
<script>
var createdElements={}
var createdElements={}
function func0(arg) {
try {window.addEventListener("select",func0,0)} catch(e) {}
try {document.styleSheets[0].insertRule("FONT,FONT {outline-offset: initial; }",0)} catch(e) {}
try {delete HTML0} catch(e) {}
try {window.status=""} catch(e) {}
}
try { HTML0=document.createElement("FONT")} catch(e) {}
try { HTML0.id="HTML0"} catch(e) {}
try { createdElements['HTML0']=HTML0} catch(e) {}
try { document.body.appendChild(HTML0)} catch(e) {}
try { TXT0=document.createTextNode('ä¤쭅4ዽB£x]ဒ00fcihF‰f꡴{½-嘖j蹅a2z2墯6')} catch(e) {}
try { createdElements['TXT0']=TXT0} catch(e) {}
try { HTML0.appendChild(TXT0)} catch(e) {}
try { var EVT0= new Event("select",{"bubbles":0, "cacelable":0})} catch(e) {}
try { var ni0 = document.createNodeIterator(HTML0.firstChild,32,NodeFilter.FILTER_REJECT,1); createdElements['ni0']=ni0}
catch(e) {}
try {TXT0.lastChild=""} catch(e) {}
try {gc()} catch(e) {}
try {createdElements[HTML0].style.imageRendering="pixelated"} catch(e) {}
try {delete HTML0} catch(e) {}
try {window.status=""} catch(e) {}
</script> </html>

Results

• Using Wadi we were able to find And report 4
confirmed bugs in latest Chromium ASan.
version

• 2 Were Duplicates.
• Issue No: 446517 Duplicate With issue 383777
• Issue No: 445772 Duplicate with Issue: 445638

• 2 were confirmed with security severity high
and affecting all OS. Fixed awaiting Release
and hopefully reward :D
• Issue No: 445332
• Issue No: 453279

BUG#1 Issue No:446517

BUG#2 Issue No:445772

BUG#3 Issue No:445332

BUG#4 Issue No:453279

References
• http://www.w3.org/DOM/
• http://www.w3.org/TR/WebIDL/
• Fuzzing Brute Force Vulnerability Discovery:

Michael Sutton, Adam Greene, Michael
Pedram Amini.

• Fuzzing for Software Security Testing and
Quality Assurance: Ari Takanen, Jared D.
Demott, Charlie Miller.

• Browser bug hunting - Memoirs of a last man
standing: Atte Kettunen 44con talk.

http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/
http://www.w3.org/TR/WebIDL/

Q&A

