
  

Advances in Linux 
process forensics 

with ECFS



  

Quick history

● Wanted to design a process snapshot 
format native to VMA Vudu

● http://www.bitlackeys.org/#vmavudu

● ECFS proved useful for other projects as 
well

http://www.bitlackeys.org/#vmavudu


  

Problem space 

 A process address space is complex with 
many components

➢ ELF binary format (structural nuances)

➢ Dynamic linking

➢ Architecture specific data and structures

➢ Kernel specific data and code (VDSO, VSYSCALL)

➢ Multiple threads



  

Hackers infect processes

● Process infection is stealth and flexible

● Processes are attacked in many ways
➢ Viruses

➢ Rootkits

➢ Backdoors

➢ Exploitation



  

Process forensics capable tools

● Volatility

● Rekall

● Second Look

● ptrace system call

● GDB

● Core dumps



  

Volatility in kernel land 

● Use full system memory dumps

● Dwarf symbols to acquire high resolution 
insight into the Linux kernel

● Can be used to detect virtually any kernel 
malware

● System.map, and libdwarf are friendly for 
this (Creating kernel profiles)



  

Volatility in process memory

● detect_plt – A plugin for detecting 
PLT/GOT hooks by Georg Wicherski

● Process snapshots are raw

● Low resolution insight compared to kernel

● Plugin development is a big task

● No profile can exist for each process



  

Full memory dump vs. process 
memory dump

● Macrocosm: full memory dump

● Microcosm: process memory dump

● ECFS focuses on the Microcosm



  

Extended core file snapshot

● A custom core file format for forensics 
analysis

● Backwards compatible with Linux Core 
files

● HI-DEF resolution process-snapshots



  

Overview of attack surface

●  ET_DYN Injection (.so files)

●  ET_REL Injection (.o files)

●  ET_EXEC Injection (exe files)
➢ LD_PRELOAD

➢ __libc_dlopen_mode

➢ sys_ptrace

➢ VDSO manipulation

➢ Shellcode based loading

● Symbol and code hijacking
➢ PLT/GOT poisoning 

➢ Trampolines (inline hooks)

➢ .ctors/.dtors patching

➢ Text segment modifications and other anomalies



  

Process memory layout



  

Definition of process memory 
forensics & analysis

● Understanding the process layout and structure

● Learning the programs runtime characteristics

● Identifying anomalous code or data

● Identifying process infection  
➢ Backdoors

➢ Rootkits

➢ Keyloggers

➢ Viruses

➢ protected binaries



  

Traditional core files .p1

● A snapshot of a process

● Contains segments (text, data, stack, heap)

● Contains all memory mappings 

● File mappings and shared libraries

● ELF file header 

● Program headers describing memory 
layout 



  

Traditional core files .p2

● The PT_NOTE segment in a core file 
contains:

➢ Register state (struct elf_prstatus)

➢ Shared library paths

➢ Auxiliary vector

➢ Signal information



  

Traditional core files .p3

● A core file is dumped by the kernel when a 
process is delivered SIGSEGV

● /usr/src/linux/binfmt_elf.c 

● Core files are useful for debugging a 
crashing application



  

Traditional cores are useless for 
forensics

● Highly dependent on the original 
executable being available 

● Do not provide more than 4096 bytes of 
text images 

● Does not give high resolution insight into a 
process



  

Recap on forensics goals

● Detect shared library injection

● Detect function hijacking (Trampolines)

● Detect PLT/GOT hooks

● Detect ELF object injection

● Function pointer redirection

● Shellcode injection

● Strange segment permissions

● ETC.



  

We want to quickly identify

● Userland memory rootkits

● Exploitation residuals

● Runtime malware/viruses



  

ECFS Technology

● ECFS is a technology that transforms a 
process image into an ELF file format 

● ECFS makes process analysis much 
easier

● Analogy (Photographing a process image)

Core file   (Low res)                     ECFS file (Hi res)



  

ECFS Use cases

● Live malware analysis

● Process forensics

● Help break protected binaries

● Pausing and re-starting processes 
(Process necromancy)



  

ECFS Features outline

● Hooks into the Linux kernels core handler

● Backwards compatible with core files

● Full symbol table reconstruction

● Section header table reconstruction

● Built-in heuristics

● Custom sections containing

- file descriptor data

- socket data

- IPC data

- Signal data

- Auxiliary vector

- Compressed /proc/<pid> directory

● Re-execution (Pausing a process and running it later)

● Libecfs (API) for parsing ECFS files



  

Core handler (core_pattern)

● /proc/sys/kernel/core_pattern

● We tell core_pattern to pipe core files into 
our ecfs handler which then constructs an 
ecfs file

● Snapshots without killing the process are 
also possible (Not using core handler)
echo '|/opt/ecfs/bin/ecfs_handler -t -e %e -p %p -o 
/opt/ecfs/cores/%e.%p' > /proc/sys/kernel/core_pattern



  

Symbol table reconstruction .symtab

● The PT_GNU_EH_FRAME segment 
contains FDE (Frame descriptor entries) 

● .eh_frame data is used for stack 
unwinding

● Can be used to find the location and size 
of every function within the binary

● http://www.bitlackeys.org/#eh_frame

http://www.bitlackeys.org/#eh_frame


  

.symtab reconstruction is paramount

● Auto control flow (such as with IDA) fails 
when: Binary is encrypted

● ECFS reconstructs symbol table with 
exact function location and size even with 
encrypted binaries

● Show example of reconstructed Maya 
protected binary



  

Symbol table reconstruction .dynsym

● located by looking at the dynamic 
segment and finding DT_SYMTAB

● resolve the address of every shared 
library function at runtime

● plug these values into the corresponding 
symbol table entry



  

ECFS Section headers

● Reconstructs most of the original section 
headers (i.e., .text, .data, .plt, .got.plt, etc.)

● ECFS adds many new never before seen 
section headers that are specific to process 
analysis



  

ECFS custom sections

● .heap – process heap

● .stack – process stack

● .vdso – virtual dynamic shared object

● .vsyscall – vsyscall page

● ._TEXT – text segment (Not the same as .text)

● ._DATA – data segment (Not the same as .data)



  

ECFS custom sections .p2

● .procfs.tgz - compressed /proc/pid

● .prstatus - process status info, registers, etc.

● .fdinfo – file descriptors, sockets, pipes

● .siginfo – Signal and fault info

● .auxvector – auxiliary vector from stack

● .exepath – path of original executable

● .personality – ECFS personality info



  

ECFS custom sections .p3

● .arglist – 'char **argv' of program

● .fpregset – Floating point registers



  

ECFS Custom section types

● SHT_SHLIB – Marks shared library segment 
mapping

● SHT_INJECTED – Marks injected ELF objects 
(ET_DYN, ET_REL, etc).

● SHT_PRELOADED – Marks shared libraries that 
were LD_PRELOAD'd



  

Injection detection heuristics

● ECFS uses techniques to detect injected ELF 
objects

● Can detect shared libraries that were not 
loaded by the dynamic linker

● Can detect any type of injected object file, 
executable or shared library

● Can differentiate between dlopen and 
__libc_dlopen_mode

 



  

Libecfs (API)

● ECFS parsing library
➢ Tool development is made very easy

➢ Program analysis on protected binaries

➢ Detecting advanced process infections

➢ Isolating the parasite code

➢ Distinct access to program structures and data types



  

/usr/bin/readecfs

● Readecfs utility

● Similar to readelf 

● Uses libecfs to parse ecfs files

● Can extract parasites, code, sections from 
ecfs files

● Still in early development



  

ECFS Re-execution

● ECFS snapshots can be taken and then 
re-executed later in time

● Can be used for live process migration

● Analysis of a suspicious process (re-
executed within a sandbox)

● Beta stages

● https://github.com/elfmaster/ecfs_exec

https://github.com/elfmaster/ecfs_exec


  

Demo 1 – Detecting anti-forensics 
process cloaking technique

● Take snapshot of process infected with 
Saruman PIE executable injection

● Detect infection using simple readelf

● Extract parasite code using readecfs

 http://www.bitlackeys.org/#saruman

http://www.bitlackeys.org/#saruman


  

Demo 2 – Detect userland rootkit

● Take snapshot of process infected with 
Azazel userland rootkit

● Use readecfs to extract the parasite code 

● Use detect_plt_hooks to show PLT/GOT 
hooks in-place



  

Demo 3 – libecfs for tool 
development is easy 

● The detect_plt_hooks.c is less than 60 
lines of code 

● Can detect ELF Object injection

● Can detect Shared library injection 
(ptrace/mmap/__libc_dlopen_mode)

● Can detect LD_PRELOAD libraries

● Can detect PLT/GOT hooks



  

Demo 4 – ECFS snapshot execution

● Take a snapshot of a simple process that 
is reading from /etc/passwd and printing 
the results

● Restore the snapshot, and demonstrate 
how it restores the file streams, and 
continues reading from the file



  

Questions?

● ECFS 

● https://github.com/elfmaster/ecfs

● ECFS snapshot execution

● https://github.com/elfmaster/ecfs_exec

● Saruman anti-forensics execve

● https://github.com/elfmaster/saruman

https://github.com/elfmaster/ecfs
https://github.com/elfmaster/ecfs_exec
https://github.com/elfmaster/saruman
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