

Advances in Linux
process forensics

with ECFS

Quick history

● Wanted to design a process snapshot
format native to VMA Vudu

● http://www.bitlackeys.org/#vmavudu

● ECFS proved useful for other projects as
well

http://www.bitlackeys.org/#vmavudu

Problem space

 A process address space is complex with
many components

➢ ELF binary format (structural nuances)

➢ Dynamic linking

➢ Architecture specific data and structures

➢ Kernel specific data and code (VDSO, VSYSCALL)

➢ Multiple threads

Hackers infect processes

● Process infection is stealth and flexible

● Processes are attacked in many ways
➢ Viruses

➢ Rootkits

➢ Backdoors

➢ Exploitation

Process forensics capable tools

● Volatility

● Rekall

● Second Look

● ptrace system call

● GDB

● Core dumps

Volatility in kernel land

● Use full system memory dumps

● Dwarf symbols to acquire high resolution
insight into the Linux kernel

● Can be used to detect virtually any kernel
malware

● System.map, and libdwarf are friendly for
this (Creating kernel profiles)

Volatility in process memory

● detect_plt – A plugin for detecting
PLT/GOT hooks by Georg Wicherski

● Process snapshots are raw

● Low resolution insight compared to kernel

● Plugin development is a big task

● No profile can exist for each process

Full memory dump vs. process
memory dump

● Macrocosm: full memory dump

● Microcosm: process memory dump

● ECFS focuses on the Microcosm

Extended core file snapshot

● A custom core file format for forensics
analysis

● Backwards compatible with Linux Core
files

● HI-DEF resolution process-snapshots

Overview of attack surface

● ET_DYN Injection (.so files)

● ET_REL Injection (.o files)

● ET_EXEC Injection (exe files)
➢ LD_PRELOAD

➢ __libc_dlopen_mode

➢ sys_ptrace

➢ VDSO manipulation

➢ Shellcode based loading

● Symbol and code hijacking
➢ PLT/GOT poisoning

➢ Trampolines (inline hooks)

➢ .ctors/.dtors patching

➢ Text segment modifications and other anomalies

Process memory layout

Definition of process memory
forensics & analysis

● Understanding the process layout and structure

● Learning the programs runtime characteristics

● Identifying anomalous code or data

● Identifying process infection
➢ Backdoors

➢ Rootkits

➢ Keyloggers

➢ Viruses

➢ protected binaries

Traditional core files .p1

● A snapshot of a process

● Contains segments (text, data, stack, heap)

● Contains all memory mappings

● File mappings and shared libraries

● ELF file header

● Program headers describing memory
layout

Traditional core files .p2

● The PT_NOTE segment in a core file
contains:

➢ Register state (struct elf_prstatus)

➢ Shared library paths

➢ Auxiliary vector

➢ Signal information

Traditional core files .p3

● A core file is dumped by the kernel when a
process is delivered SIGSEGV

● /usr/src/linux/binfmt_elf.c

● Core files are useful for debugging a
crashing application

Traditional cores are useless for
forensics

● Highly dependent on the original
executable being available

● Do not provide more than 4096 bytes of
text images

● Does not give high resolution insight into a
process

Recap on forensics goals

● Detect shared library injection

● Detect function hijacking (Trampolines)

● Detect PLT/GOT hooks

● Detect ELF object injection

● Function pointer redirection

● Shellcode injection

● Strange segment permissions

● ETC.

We want to quickly identify

● Userland memory rootkits

● Exploitation residuals

● Runtime malware/viruses

ECFS Technology

● ECFS is a technology that transforms a
process image into an ELF file format

● ECFS makes process analysis much
easier

● Analogy (Photographing a process image)

Core file (Low res) ECFS file (Hi res)

ECFS Use cases

● Live malware analysis

● Process forensics

● Help break protected binaries

● Pausing and re-starting processes
(Process necromancy)

ECFS Features outline

● Hooks into the Linux kernels core handler

● Backwards compatible with core files

● Full symbol table reconstruction

● Section header table reconstruction

● Built-in heuristics

● Custom sections containing

- file descriptor data

- socket data

- IPC data

- Signal data

- Auxiliary vector

- Compressed /proc/<pid> directory

● Re-execution (Pausing a process and running it later)

● Libecfs (API) for parsing ECFS files

Core handler (core_pattern)

● /proc/sys/kernel/core_pattern

● We tell core_pattern to pipe core files into
our ecfs handler which then constructs an
ecfs file

● Snapshots without killing the process are
also possible (Not using core handler)
echo '|/opt/ecfs/bin/ecfs_handler -t -e %e -p %p -o
/opt/ecfs/cores/%e.%p' > /proc/sys/kernel/core_pattern

Symbol table reconstruction .symtab

● The PT_GNU_EH_FRAME segment
contains FDE (Frame descriptor entries)

● .eh_frame data is used for stack
unwinding

● Can be used to find the location and size
of every function within the binary

● http://www.bitlackeys.org/#eh_frame

http://www.bitlackeys.org/#eh_frame

.symtab reconstruction is paramount

● Auto control flow (such as with IDA) fails
when: Binary is encrypted

● ECFS reconstructs symbol table with
exact function location and size even with
encrypted binaries

● Show example of reconstructed Maya
protected binary

Symbol table reconstruction .dynsym

● located by looking at the dynamic
segment and finding DT_SYMTAB

● resolve the address of every shared
library function at runtime

● plug these values into the corresponding
symbol table entry

ECFS Section headers

● Reconstructs most of the original section
headers (i.e., .text, .data, .plt, .got.plt, etc.)

● ECFS adds many new never before seen
section headers that are specific to process
analysis

ECFS custom sections

● .heap – process heap

● .stack – process stack

● .vdso – virtual dynamic shared object

● .vsyscall – vsyscall page

● ._TEXT – text segment (Not the same as .text)

● ._DATA – data segment (Not the same as .data)

ECFS custom sections .p2

● .procfs.tgz - compressed /proc/pid

● .prstatus - process status info, registers, etc.

● .fdinfo – file descriptors, sockets, pipes

● .siginfo – Signal and fault info

● .auxvector – auxiliary vector from stack

● .exepath – path of original executable

● .personality – ECFS personality info

ECFS custom sections .p3

● .arglist – 'char **argv' of program

● .fpregset – Floating point registers

ECFS Custom section types

● SHT_SHLIB – Marks shared library segment
mapping

● SHT_INJECTED – Marks injected ELF objects
(ET_DYN, ET_REL, etc).

● SHT_PRELOADED – Marks shared libraries that
were LD_PRELOAD'd

Injection detection heuristics

● ECFS uses techniques to detect injected ELF
objects

● Can detect shared libraries that were not
loaded by the dynamic linker

● Can detect any type of injected object file,
executable or shared library

● Can differentiate between dlopen and
__libc_dlopen_mode

Libecfs (API)

● ECFS parsing library
➢ Tool development is made very easy

➢ Program analysis on protected binaries

➢ Detecting advanced process infections

➢ Isolating the parasite code

➢ Distinct access to program structures and data types

/usr/bin/readecfs

● Readecfs utility

● Similar to readelf

● Uses libecfs to parse ecfs files

● Can extract parasites, code, sections from
ecfs files

● Still in early development

ECFS Re-execution

● ECFS snapshots can be taken and then
re-executed later in time

● Can be used for live process migration

● Analysis of a suspicious process (re-
executed within a sandbox)

● Beta stages

● https://github.com/elfmaster/ecfs_exec

https://github.com/elfmaster/ecfs_exec

Demo 1 – Detecting anti-forensics
process cloaking technique

● Take snapshot of process infected with
Saruman PIE executable injection

● Detect infection using simple readelf

● Extract parasite code using readecfs

 http://www.bitlackeys.org/#saruman

http://www.bitlackeys.org/#saruman

Demo 2 – Detect userland rootkit

● Take snapshot of process infected with
Azazel userland rootkit

● Use readecfs to extract the parasite code

● Use detect_plt_hooks to show PLT/GOT
hooks in-place

Demo 3 – libecfs for tool
development is easy

● The detect_plt_hooks.c is less than 60
lines of code

● Can detect ELF Object injection

● Can detect Shared library injection
(ptrace/mmap/__libc_dlopen_mode)

● Can detect LD_PRELOAD libraries

● Can detect PLT/GOT hooks

Demo 4 – ECFS snapshot execution

● Take a snapshot of a simple process that
is reading from /etc/passwd and printing
the results

● Restore the snapshot, and demonstrate
how it restores the file streams, and
continues reading from the file

Questions?

● ECFS

● https://github.com/elfmaster/ecfs

● ECFS snapshot execution

● https://github.com/elfmaster/ecfs_exec

● Saruman anti-forensics execve

● https://github.com/elfmaster/saruman

https://github.com/elfmaster/ecfs
https://github.com/elfmaster/ecfs_exec
https://github.com/elfmaster/saruman

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

