
Cracking Cryptocurrency
Brainwallets

Ryan Castellucci
DRAFT SLIDES, WILL BE REVISED!
FOR FINAL VERSION AFTER TALK

https://rya.nc/dc23

Disclaimer
Stealing from people with weak passphrases

isn’t nice. Don’t be an asshole.

What’s a cryptocurrency?

● Bitcoin is the most widely known example.
● Electronic money which can operate without

banks or governments
● Secured with cryptographic algorithms
● Transferred via a sort of electronic check
● Checks are made public to prevent bounces
● Control of key == Control of money

What’s a brainwallet?
● A brainwallet is a cryptocurrency key that is

created from a password (or passphrase)
● Some people believe that this will make their

money harder to steal (or seize)
● Knowledge of password == Control of money
●
● Sending money to a brainwallet publishes a

hash of it. What if the hash can be cracked?

It seemed like it might be interesting

● Came across a blog post about brainwallets
○ The author made some and posted about

it to see how long they’d take to crack
● I figured writing a cracker would be a fun

way to spend my commute for a few days
● But why try to crack three brainwallets when

you can try to crack all of them?

My first brainwallet cracker

● Simple design, pass a file with pubkeyhashs,
then pipe words/phrases on STDIN

● Written in C using OpenSSL’s crypto
● ~10,000 passwords per second on my PC
● The slowest part, by far, is turning the

private key into a public key. More on that
later.

Taking it for a spin

● I start feeding it password cracking wordlists
● Find some tiny amounts of money
● Scrape wikiquote and a few other sites to

build myself a phraselist
● Run the phraselist - it gets some hits after a

few hours
● Pull balances, see one with 250BTC

Well, that is interesting. Now what?

● 250BTC was worth about $15k
● I wanted to fix this. I’m friends with Dan

Kaminsky. He’s fixed some big things. After
regaining my composure, I called him.

● As luck would have it, he was in town
● We meet up about an hour later to figure out

how to do the right thing

A plan begins to form

● I felt it would be wrong to take and “hope”
find the rightful owner

● I could send some spare change to it and
then take it back

● You can even put short words in a Bitcoin
address, so a subtle message is possible

● My girlfriend (now wife) piped up with “yoink”

That time I accidently stole 250 BTC

● After getting an appropriate address with
vanitygen, I do some transactions

Oops. :-(

● What’s that other address?
● …why isn’t it in the list of my addresses?
● …
● ...oh, right, that’s my change address…
● ...and Bitcoin had its own opinions on what

outputs should be spent
● Quick, before anyone notices!

Wait, what?

● Bitcoin transactions have inputs and outputs
● Old, unspent outputs are used as inputs on a

new transaction, but they can only be spent
in full

● You might need more than one, and you
might need to make change for yourself

● If you want details, see https://rya.nc/b4

https://rya.nc/b4

See, I put it back. It’s fine.

● After fixing it, I did a few “run a few cents
through it” transactions

● The owner did not take the hint :-(
● I’ll just find them. The address was funded

by 12DK76obundhnnbGKcaKEn3BcMNNH5SVU4
● That address received a payout from

DeepBit. DeepBit collects email addresses.

Social engineering, Whitehat style

● I send “Tycho” the guy who runs DeepBit
messages via BitcoinTalk, email, and IRC

● Eventually I manage to talk to him on IRC
● I explain that one of his users has coins

stored unsafely, but can’t elaborate
● He wouldn’t give out any user details
● He does agree to contact the user for me

Success.

● The guy emails me, and I ask him to call me
● He does, and I establish that it was indeed

his brainwallet
● He moves the coins and insists on sending

me a small reward

Some history

● August 2011 Kaminsky demos Phidelius, an
OpenSSL hack, mentions Bitcoin as a
possible use https://rya.nc/b5

● January 2012 Casascius adds a brainwallet
entry to the Bitcoin wiki

● April 2012 brainwallet.org comes online
● I couldn’t really find anything pre-2012

https://rya.nc/b5

How to make a brainwallet
"correct horse battery staple" Passphrase
v v v v v v v v SHA256
c4bbcb1fbec99d65bf59d85c8cb62ee2 Private key
db963f0fe106f483d9afa73bd4e39a8a
v v v v v v v v v v v v v v v v v v v privateToPublic
 (UNCOMPRESSED) (COMPRESSED)
04 78d430274f8c5ec1321338151e9f27f4 -> 03 78d430274f8c5ec1321338151e9f27f4 Public key
 c676a008bdf8638d07c0b6be9ab35c71 c676a008bdf8638d07c0b6be9ab35c71
 a1518063243acd4dfe96b66e3f2ec801 | | | | | | | |
 3c8e072cd09b3834a19f81f659cc3455 | | | | | | | | SHA256
 v v v v v v v v v v v v v v v v
 b57443645468e05a15302932b06b05e0 7c7c6fae6b95780f7423ff9ccf0c552a
 580fa00ba5f5e60499c5c7e7d9c7f50e 8a5a7f883bdb1ee6c22c05ce71c1f288
 v v v v v v v v v v v v RIPEMD160
 c4c5d791fcb4654a1ef5 79fbfc3f34e7745860d7 Hash160  
 e03fe0ad3d9c598f9827 6137da68f362380c606c (used for tx)  
 v v v v v v v v v v v v Base58Check
 1JwSSubhmg6iPtRjtyqhUYYH7bZg3Lfy1T 1C7zdTfnkzmr13HfA2vNm5SJYRK6nEKyq8 Address

What’s wrong with that?

● It’s an unsalted, un-iterated password hash
that you publish to the world…

● ...and cracking them directly yields
pseudonymous, easily laundered currency

● We’ve known for years that passwords need
to be run through a hardened hash

● People have very poor intuition of how
strong their passphrases are

Better options

● Electrum-style “12 word seed”, computer
generated but memorable with some effort

● WarpWallet allows for a salt (email) and
uses key stretching, but weak passphrases
still a problem

● BIP38 “paper wallets” - print it out and hide it
under your mattress

Key strength

● Usually measured in bits
● Adding a bit doubles the strength
● Adding ten increases it a thousandfold
● Figuring out how many bits a password is

equivalent to is very, very hard
● Microsoft’s estimate was that the average

user’s password was equivalent to ~40 bits
● That seems absurdly high

Key stretching

● Make cracking hard by slowing it down
● scrypt, bcrypt, pbkdf2, sha512crypt, etc
● In practice, you can make it on the order of a

million times slower
● Gain 20 bits +/- 4 bits in effective strength
● Need somewhere between 72 and 128 bits
● There’s a significant shortfall here

Extreme key stretching (just an idea)

● Generate a short (16-24 bits) random salt
● Have the KDF chew on it for a few seconds
● Save the output (the shortcut)
● Use the shortcut as salt to a to second KDF
● Without the shortcut, you can spend a few

hours brute forcing the salt
● A vetted scheme for this would be needed

Actually secure passwords

● Pick it randomly - easy, right?
● Random numbers are hard for humans to

remember
● Password managers!
● What protects the password manager?
● Backups are hard
● Turtles all the way down

Cryptomnemonics

● Humans have a hard time memorizing a
bunch of random numbers

● Turn the random numbers into something
easier to memorize

● Diceware is a very old scheme that does this
● Open problem, actively researched
● I built https://rya.nc/storybits - feedback?
● How easy can we make these things?

https://rya.nc/storybits

Introducing Brainflayer

● Does about 100,000 passphrases per
second on my quad core i7 3.5GHz

● Using EC2 spot instances would cost about
$700 to check a billion passphrases

● A mid-sized botnet with million nodes each
trying 10,000 passphrases per second could
check nearly 1015 (~249.5) in a day

Introducing Brainflayer (cont’d)

● At that speed a passphrase of four random
common English words falls in about an hour

● Low level optimization and fancy math are
not my thing, but there is plenty of room for
improvement here even without GPGPU

● Has a lookup table generation mode
● Crack multiple cryptocurrencies at once

How Brainflayer works

● We need to go from passphrase to Hash160
and check if that Hash160 has been used

● I got about a 10x speed increase switching
to libsecp256k1 to generate the public key

● Quickly checking if a Hash160 has ever
received money can be done with a data
structure called a bloom filter

Bloom filter?

● A space-efficient probabilistic data structure
● Consists of a large array of bits
● To add an item, hash that item n ways and

set n corresponding bits
● To check if an item is present, hash that item

n ways - if all n corresponding bits are set
then it probably is.

Probably?

● The error rate can be made quite small
● Most of the time we’re getting a “no” and we

want that to be fast
● The “probably” can be fully verified later

Isn’t running more hashes slow?

● Yes, even the non-cryptographic ones
● So we don’t run more hashes
● Our items are already hashed
● Just slice and dice the bits, which is fast

Building a phraselist

● Song lyric sites, Wikiquotes, Wikipedia,
Project Gutenberg, forums, reddit, etc.

● Needs normalization, then normalized lists
can have rules applied to them

Example cracked brainwallets
● Zed's dead baby. Zed's dead.
● 22Jan1997
● Am I invisible because you ignore me?
● antidis3stablishm3ntarianism
● youaremysunshinemyonlysunshine
● The Persistence Of Memory
● toby102
● permit me to issue and control the money of a nation

and i care not who makes its laws

Everyone loves demos.

<INSERT DEMO HERE>

What’s already happening?

● There appear to be at least four currently
active brainwallet thieves, probably more

● Send funds to a particularly weak brainwallet
and they’ll be gone in seconds

● Lookup tables for large numbers of
passwords have clearly been built

● Adaptive behaviour has been observed
● Cracking speeds unclear

Lookup tables?

● There is competition for weak brainwallets
● Must be fast, rainbow tables too slow
● Use your favorite key-value store
● Truncate the Hash160 (64 bits, save space)
● Store the passphrase or private key,

whichever is shorter
● A $120 4TB disk will store 236 passphrases

Lookup tables? (cont’d)

● Monitors for transactions
● Check addresses against key-value store
● LRU cache in front of key-value store
● On a hit, use the private key to make a new

transaction taking the funds
● Do this faster than others trying to do the

same
● I have not built any of this, but it exists

SUPER SECRET SECOND DEMO

<INSERT DEMO HERE>

