

PROBLEM DEFINITION

®= Given an arbitrary string, decide whether the string is a random
sequence of characters

= Disclaimer 1: This work does not address strings that are random
sequences of dictionary words

®= Disclaimer 2: The current parameters of the code are tuned for
strings with length 8 or more

MOTIVATION AND BACKGROUND

= Detecting domain names that are generated by Domain
Generation Algorithms (DGA)

= Many have studied this problem:

= Papers such as:

= S. Yadav, A. Reddy, A.L.N. Reddy, and S. Ranjan, "Detecting Algorithmically Generated
Malicious Domain Names", IMC’10, November 1-3, 2010, Melbourne, Australia.

= J. Raghurama, D.J. Millera, and G. Kesidis, "Unsupervised, low latency anomaly detection of
algorithmically generated domain names by generative probabilistic modeling", Journal of
Advanced Research, Vol. 5, Issue 4, pp. 423-433.

= Bayesian network approaches
= Random Forrest classifiers

OUR APPROACH; THE BIG PICTURE

= Gather as many dictionaries as you can

= Look up substrings of a given string in the dictionaries

= Based on
* number of dictionary hits
= length of substrings that were in a dictionary
* number of different languages needed to cover the substrings

define a randomness score.

Used the score to determine whether the string is random

‘MEGA” DICTIONARY

Afrikaans
Akan
Albanian
Bulgarian
Catalan*
Chichewa
Croatian
Czech
Danish
Dutch

‘MEGA”

English*
Esperanto**
Estonian
Faroese
French*
Frisian
Gaeilge
Galician
German*
Greek

Hungarian
Indonesian
Interlingua**
Italian
Kinyarwanda
Kurdish

Latin

Latvian
Lithuanian
Malagasy

% Source: OpenOffice and others
* Different versions of the language

** Constructed language

DICTIONARY

Malay
Mandarin
Maori
Norwegian*
Occitan
Polish
Portuguese*
Romanian
Russian*
Saraiki

Scottish Gaelic
Slovene

Southern Ndebele
Southern Sotho
Spanish*

Swalbhili

Swati

Swedish

Tagalog

Tetum

Tsonga
Tswana
Turkish
Ukrainian
Venda
Viethamese
Welsh
Xhosa

Zulu

‘MEGA” DICTIONARY -

US 1990 census data:
* Female names

= Male names

= Surnames

= Dictionary of Scrabble words

Alexa 1000 domain names

®= Numbers

= Dictionary of texting acronyms
u “yoloﬂ’ “WYd”, “ttyt”

SPECIAL TREATMENT

= Slugify to deal with accents, special characters, etc.

®= Mandarin, Japanese, ..
= ER
* Pinyin: “geng3 quan3”
= The following words are added to the dictionary:
= “geng3quan3”
= “gengquan”

® Russian and Ukrainian
= Use “koi8-r" decoding
= “[” and “y” are used interchangeably

SAME WORD MULTIPLE DICTIONARIES

The word “book” appears in multiple different dictionaries
= English, Polish, Dutch

®= Run Map-Reduce to find all the dictionaries that a word appears in

= As a result every entry of the “mega” dictionary looks like
- “SUiS”, [ladl, |n||’ lafl’ |ms|, lcal’ |fr’]
= Each element of the list is a 2-letter code indicating a dictionary

= Some special dictionaries:
= ‘ee’: English dictionary with ~360K words (simple English)
= ‘ad’: English dictionary (including Scrabble words) with over 1.5M words (elaborate English)

MEGA DICTIONARY

= A Python dictionary of str to list of str
= “suis”: ['ad’', 'nl', 'af', 'ms’, 'ca’, 'fr’]

= Lookup time complexity O(1) for average case

= Currently contains over 11.7M entries

LOOKING UP SUBSTRINGS

® Traversing the string
= From left:

= “mystring” > “mystring”
= “mystring” > “ystring”
= “mystring” > “string”
= “mystring” > “tring”
= “mystring” > “ring”
= “mystring” - > “ing”

* From right:
= “mystring” . > “mystring”
= “mystring” . > “mystrin”
= “mystring” > “mystri”
"= “mystring” . > “‘mystr”
= “mystring” . > “myst”
= “mystring” . > “mys’

LOOKING UP SUBSTRINGS

From left:

= “goodtobethere”
= “goodtobethere”
= ‘“goodtobethere”
= ‘“goodtobethere”
= ‘“goodtobethere”
= ‘“goodtobethere”
= “goodtobethere”
= “goodtobethere”

= ‘“goodtoh”
= ‘“goodtoh”
= ‘“goodtob”
= ‘“goodtob”
= ‘“goodtob”
= “good”

“goodtobethere”
“oodtobethere”
“odtobethere”
“dtobethere”
“tobethere”
“obethere”
“bethere”
“ethere”

“goodtob”
“oodtob”
“odtob”
“dtob”
“tob”

ngoodn

SIMPLE ENGLISH

® Traversing and looking up (simple English)

No
No
No
No
No
No
No
Yes!

No
No
No
No
Yes!

Yes!

[“ethere”, “tob”’ “good”]

LOOKING UP SUBSTRINGS

SIMPLE ENGLISH

= Traversing and looking up (simple English)

= From right:
= ‘“goodtobethere” “goodtobethere” No
= ‘“goodtobethere” “goodtobether” No
= ‘“goodtobethere” “goodtobethe” No
= ‘“goodtobethere” “goodtobeth” No
= ‘“goodtobethere” “goodtobet” No
= ‘“goodtobethere” “goodtobe” No
= ‘“goodtobethere” “goodtob” No
= ‘“goodtobethere” “goodto” No
= ‘“goodtobethere” “goodt” No
= ‘“goodtobethere” “good” Yes!
= ‘“tobethere” “tobethere” No
= “tobethere” “tobether” No
= ‘“tobethere” “tobethe” No
= “tobethere” “tobeth” No
= ‘“tobethere” “tobet” No
= “tobethere” “tobe” Yes!
= ‘“there” “there” Yes!

[“good"’ “tobe", “there”]

PICKING BETWEEN TWO SETS

= [“ethere”, “tob”, “good”] - > min length: 3

= [“good”, “tobe”, “there”] : > min length: 4

[“gOOd”’ “tObe”’ “there”]

LOOKING UP FOR MORE LANGUAGES

= floatingbarmalapascua.com

= Registered on: June 23, 2013

®= Substrings found:
= “floating”: ['de’, 'ee’, 'it', 'ad’]
= “barma’”: ['sk’, 'sq’, 'gs’, 'cs’, 'pt']
= “lapas”: ['gs’, 'gl', 'oc', 'af', 'hi', 'It']
= “cua”: ['vi', 'en’, 'id', 'gl', 'ca’, 'gs’, 'bg', 'sq']

= How to find minimal set of dictionaries that has non-empty
intersections with all the dictionary lists above?

MINIMUM HITTING SET PROBLEM

® Collection C of subsets of a finite set S

®= A hitting set for C, i.e., a subset S'C S such thatS' contains at
least one element from each subset in C

® Find minimum cardinality hitting set, S

= Bad news: MHS is NP hard

® Good news: our sets are small enough that we use a greedy
algorithm

MINIMUM HITTING SET; GREEDY

ALGORITHM

= From each subset, pick an element and put them together into a set

® Find all possible sets built this way
®= Take the ones with minimum cardinality

® Disclaimer: there are more efficient algorithms for this problem, but this one is good enough
for us

= Back to our example:
= Substrings found:
= ‘“floating”: ['de’, 'ee', 'it', 'ad']
= ‘“barma”:['sk','sq', 'gs', 'cs', 'pt']
= “lapas”: ['gs', 'gl', 'oc', 'af', 'hi', 'It']
= “cua”:['vi','en','id'", 'gl', 'ca', 'gs', 'bg', 'sq’]

= Minimum hitting sets:
['de’, 'gs'], ['ee’, 'gs'], ['gs', 'it'], ['gs', ‘ad']

= At least 2 dictionaries are needed to cover the words

NON-RANDOMNESS SCORE

= Factors:
= Minimum hitting set number
= Length of the string
= Sum of length of words found in the string
= Number of words longer than 3 letter

= These factors along with parameters that are tuned are used
to give scores for:

= Randomness with regards to a “simple” English dictionary
= Randomness with regards to a “comprehensive” English dictionary
= Randomness with regards to “all” languages

OTHER CONSIDERATIONS

® Sequence of alternating vowels and consonants.
= Example: “symebitop”, “cusabifik”, “figih-avow”, ...

®|s “_" or “-” present in the string?

= These characters indicate some sort of separation that could be used
= Example: “ugg-outlet-store-online”, “free-android-claims”

= Punycode:
= xn--t8j0gd4151ac8betyjqbg
= BEEYSLEIF

RESULT

= False negative:

We use 9 Domain Generation Algorithms to generate random strings
We see how many of them are missed by our algorithm

Algorithm name biscuit caphaw cryptolocker expiro ramdo tinba zbot zeus-1 zeus-2
Number of samples 2,500 10,000 1,000 23,500 5,000 1,000 1,000 1,000 1,000
Number of missed 9 26 11 5 19 19 1 3 0
Missed percentage 0.36% 0.26% 1.10% 0.02% 0.38% 1.90% 0.10% 0.30% 0.00%
fibnflgi wppobrup uspsjkvlorars frenek-eben Wwsaomesoewesgcaw htneeliioves bcbaadee236 sotdeprctuwhnyvgnbibdeil
tmaystbz rudocrs9 rpgsuesaftqor fweru-ferin skosmeeceiawicyo Immmpcutenil pbicmdipnjeudhencikemyt
Some of missed samples ihrblutpig isikocmg edendmipxxpin fwenu-ferin uoygomesgsugueaq mutuummfmmhd mnpobcyeuvofeaaimtsaepuctoh
naoh6srb Obunkkho pltctuskgdrlet frolek-oder myoseamsysmoogog dpthshyufixy

7uebsquk phsixbpt dbasgilajayet flores-ezer cemwimmigcikaamu xwlobbymhgry

= False positive:
Take Alexa 10,000 domains
Filter out strings shorter than 8 characters

Left with 5400 domain names.

RESULTS

| run them through my code
here are the ones that my cod

:lrlnebwasno
fmdwbsfxfO
nguoiduatin
fullvehdfilmizle
akb48matomemory
thagafnafsak

nsdfsfilq8asdasdzz

bezuzyteczna
plsdrct2
mazika2day
plsdrctl
3djuegos
srv2trking

ilasdomkim9812m4z3

thiruttuved
andhrajyothy
hosyusokuhou
addic7ed
phununet
vecteezy

thiruttuvcd

123sdfsdfsdfsd
canlidizihd1
przegladsportowy
1c-bitrix
thgafawe3lom
turkcealtyazi

esrvadspix

e detected as random

lavoixdunord
abckj123
follovwme
anige-sokuhouvip
donya-e-eqtesad
adstrckr

isif-life

3abaayer
muryouav
masgforo
xxeronetxx
ikihOofu
avmuryou

ig84adp2

