
HIGH-DEF FUZZING
EXPLOITATION OVER HDMI-CEC

            name = "Joshua Smith"
            job  = "Senior Security Researcher"
            job += "Zero Day Initiative"
            irc  = "kernelsmith"
            twit = "@kernelsmith"
        



Previous Research
HDMI – Hacking Displays Made Interesting

Andy Davis
BlackHat EU 2012



What is HDMI?
High Def Multimedia Interface

HDMI is a specification
Implemented as Cables & Connectors
Successor to DVI
Has Quite a Few Features



What is CEC?
Consumer Electronics Control
HDMI feature
Allows user to command & control up to 15 devices
Can relay commands from remotes
It is what automatically changes your TV input
Has some other intriguing features...



Why?
Wanted to research an area that was relatively untouched
I do not have mad hardware skills
I like RISC targets & assembly
Another attack vector for mobile devices via:

Mobile High-Definition Link (MHL) ~ Samsung & HTC
Slimport ~ LG, Google Nexus, Blackberry

My son is completely obsessed with cords/wires, esp
HDMI



Specs & Features
History

1.0 (Dec 2002), 1.1 (May 2004), 1.2 (Aug 2005)
Boring stuff

1.2a (Dec 2005)
Fully specified Consumer Electronics Control
This is the good stuff, for vulnerabilities anyway



Specs & Features
History Continued

1.3 - 1.3c (Jun 2006 through Aug 2008)
Whizz-bang A/V improvements & new connectors

1.4 (May 2009)
Most widely deployed and available
Features++: 4k, HEC, ARC, 3D, micro connector
Some that might interest us (next)

2.0 (Sep 2013)
New hotness: 4K video @60fps, Dual View, 3D++, CEC++



Specs & Features
Interesting 1.4 Features

HEC (HDMI Ethernet Connection)
Sounds tasty
100Mb/s
Enables traditional networking w/HDMI

ARC (Audio Return Channel)



CEC Details
1-wire bidirectional serial bus
Slow: 500Mb/s
Uses AV.link protocol to perform remote control functions
For HDMI:

CEC wiring is mandatory
CEC functionality (software mainly) is optional



CEC's Goals
Simplify system integration
Common protocol
Extendable (vendor-specific commands)
Commands are grouped together into Feature Sets

For example, one-touch play (OTP)
TV on, text view on (optional), set active source



Notable
Implementations

Commercial industry uses various trade names
Anynet+ (Samsung), Aquos Link (Sharp), BRAVIA
Link/Sync (Sony)
SimpLink (LG), VIERA Link (Panasonic), EasyLink
(Philips), etc

Open Source
libCEC (dual commercial license)
Android HDMI-CEC



Android HDMI-CEC

Not-HDMI CEC
Slimport
Mobile High-Definition Link (MHL)

Notes: TODO: add tidbits about Slimport and MHL, like
overloading the connector etc



CEC Addressing
PHYSICAL

N.N.N.N where 0x0<=N<=0xF
Like F.A.4.0
Obtained on hot-plug from EDID
The root display is always 0.0.0.0
If attached to 1st input on root: 1.0.0.0
Required as CEC has a notion of switching



CEC Addressing
LOGICAL

L where 0x0<=L<=0xF
Root display is always 0
By product type
Negotiated w/other devices
Example: first STB in system is always 3
Non-CEC devices only have physical addr



Logical Addresses
Address Device Address Device

0 TV 8 Playback Dev 2

1 Rec. Device 1 9 Rec Device 3

2 Rec. Device 2 10 Tuner 4

3 Tuner 1 11 Playback Dev 3

4 Playback Dev 1 12 Reserved

5 Audio System 13 Reserved

6 Tuner 2 14 Free Use

7 Tuner 3 15 Unreg/Broadcast



CEC Protocol



Blocks & Frames
Blocks

Each block is 10 bits
Max of 16 blocks (14 purely data blocks)

Frames
(1bit) Start bit
(10bits) Header block
(10bits) Opcode block
(10bits) Optional data block(s)



Header Block
Source Dest EoM Ack

3 2 1 0 3 2 1 0 E A
(4bits) Logical address of source
(4bits) Logical address of dest
(2bits) Control bits (EoM & Ack)
Example: 0100:0000:0:0 = Src 4, Dest 0



Data Block
Data EoM Ack

7 6 5 4 3 2 1 0 E A
(8bits) Data (Big-endian/MSB first)
(2bits) Control bits (EoM & Ack)
Example: 01000001:1:0 = "A"



CEC Protocol
Pinging and Polling

The "Ping"
EOM bit in header is set to 1
Used to poll for devices etc (fuzz monitor?)

Source & dest addresses will be different
Also used for allocating Logical Addresses

Source & dest addresses are the same



CEC Protocol
Additional Info

All numbers > 1 byte are transmitted as big-endian
All bit sequences are sent MSB first
Messages can be directly addressed, broadcast, or both
Should ignore a message coming from address 15, unless:

Message invokes a broadcast response
Message has been sent by a CEC Switch
The message is Standby



CEC Protocol
The Long and Short of It...

10:64:44:65:66:43:6F:6E:20:32:33

1F:82:10.00

SD:OP:41:42:43:44:45:46



CEC Protocol
Example Messages

Name ID Feature Set Addr Parameters

Poll Sys Info Direct

Get CEC Ver 9F Sys Info Direct

CEC Version 9E Sys Info Direct CEC Version

Set OSD Name 47 OSD Xfer Direct OSD Name

Set OSD Str 64 OSD Disp Direct DispCtrl,Str

Active Source 82 OTP, RC Bcast Phys Addr



CEC Protocol
Transmission (Flow) Control

3 mechanisms to provide reliable frame transfer
1. Frame re-transmissions (1 to 5)
2. Flow control
3. Frame validation (ignore msgs w/wrong #args)
A message is assumed correctly received when:

It has been transmitted and acknowledged
A message is assumed to have been acted upon when:

Sender does not receive Feature Abort w/in 1sec



Common Sequences
Addressing

1. Discovery (poll etc) of new physical address
2. Allocation (of logical address)
3. Report by broadcasting ReportPhysicalAddress
Become active source

1. Broadcast an ActiveSource to declare intention
2. Presently active source shall act appropriately



Feature Sets
One-Touch Play (OTP)

ImageViewOn* 40:04 (assumes playback dev 1)
TextViewOn 4F:0D (optional, remove displayed menus)
ActiveSource 4F:82 (assumes playback dev 1)



Attack Vectors
HDMI Ethernet Channel (HEC)
Network connectivity to things thought un-networked
Great place to hide
Targetable devices

TVs, BluRays, receivers, "TV Sticks", game consoles?
Mobile phones & tablets

Devices implementing MHL/Slimport
Known popular mobile devices that implement MHL



Attack Surface
CEC commands
HEC commands
CDC commands



Finding Vulns
Approaches

Identify "at-risk" messages & fuzz
Source Code Analysis

Hard to come by except libCEC & Android
Reverse Engineering

Can be hard to get all the firmwarez
Expect different architectures

MIPS, ARM, ARC etc
MIPS is generally most popular so far



Interesting Messages
String operations

Set OSD Name (0x47)
Preferred name for use in any OSD (menus)

Set OSD String (0x64)
Text string to the TV for display

Set Timer Program Title (0x67)
Set the name of a program associated w/a timer

Vendor-specific Messages
Because who knows what they might do



In Order to Fuzz
We Need to Answer Some Questions

How can we send arbitrary CEC messages?
How can we detect if a crash occurred?



Sending Messages
Hardware

~0 {lap,desk}tops with HDMI-CEC
Many have HDMI, none have CEC

Adapters
Pulse-Eight USB-HDMI
RainShadow HDMI-CEC to USB Bridge

Raspberry Pi
RPi & P8 adapter both use libCEC :)



Sending Messages
Software

Pulse-Eight driver is open source (libCEC)
Dual-licensed actually (GPLv2/Commercial)
Python SWIG-based bindings
Supports a handful of devices



Fuzzing CEC
libCEC

Can send CEC messages with:
Raspberry Pi + libCEC
P8 USB-HDMI adapter + libCEC

But can we really send arbitrary CEC messages?
lib.Transmit(CommandFromString("10:82:41:41:41:41:41:41:41:41:41"))

YES. It would appear at least.

To know for sure, had to ensure libCEC was not validating.



Demo



Fuzzing Process
It has been  with Python + RainbowTech serial API

I actually did not know this until late in the research
RainbowTech device has a nice simple serial API
Not much complex functionality
I had already started down the path below

libCEC + Python since pyCecClient is already a thing
Can use the P8 USB adapter and/or Raspberry Pi(s)
May port to Ruby since SWIG & Ruby++

done

https://media.blackhat.com/bh-eu-12/Davis/bh-eu-12-Davis-HDMI-WP.pdf


Fuzzing Process
Major Steps

ID Target and Inputs

Generate Fuzzed Data

Execute Fuzzed Data

Monitor for Exceptions

Determine Exploitability

Fuzzing: Brute Force Vulnerability Discovery (Sutton, Michael; Greene, Adam; Amini, Pedram)



Generate Fuzzed Data
Started with "long" strings and string-based messages
Format strings
Parameter abuse
Vendor-specific messages
Simple bit-flipping
Adopted some from Davis work



Execute Fuzzed
1. Poll device
2. Send message



Monitor for Exceptions
1. Check for ack if applicable
2. Poll again
3. If debug, use that
4. If shell, check if service/app still running
5. If TV, will probably notice crash, fun, hard to automate
6. If exception, record msg & state & debug details if avail



DETERMINE EXPLOITABILITY
This is kind of an adventure unless debug
Specific to each device



Fuzzing
Complications

Getting Hold of Devices
They are around you however, just need to look
Can also emulate w/QEMU + firmware

Speed
500 bits/s
Not much we can do about that
Fuzz multiple devices simultaneously
RE targets to focus the fuzz



Fuzzing
Complications Continued

Debugging
Need to get access to the device

Probably no debugger
Often painful to compile one for it

Collect Data
Deduplicate
Repro



Targets
Home Theater Devices

Samsung Blu-ray Player (MIPS)
Targeted because already have shell
(Thx Ricky Lawshae)
Local shell to get on & study device

Philips Blu-ray Player
Samsung TV
Panasonic TV
Chromecast
Amazon Fire TV Stick



Targets
Mobile devices

Kindle Fire
Galaxy S5 (S6 dropped MHL)
Galaxy Note
Chromebook



Fuzzing
Results



Vulns Discovered
Demos & Videos

Panasonic TV
Samsung Blu-ray Player



app_player



Exploitation
Background Info
Barriers
Samsung TV



Post exploitation
Enable HEC
Enable LAN

Attack LAN services if nec
Enable higher speed exfil etc

Wake-Over-CEC
Beachhead for attacking other devices
Hiding



Future Work
Explore Attack Surface of

HDMI: 3D, Audio Return Channel, more w/HEC
Feature adds to CEC

Moar devices
Emulation
Undo bad Python



Conclusion
Becoming more and more pervasive and invasive
Old vuln types are new again
Hard, sometimes impossible, to upgrade, maintain,
configure
Risk = Vulnerabilty x Exposure x Impact

The vulns are there
Exposure is growing
Impact is probably highest for your privacy

What next? How do we fix or mitigate this?



References

Simplified Wrapper & Interface Generator 
Reveal.js 

blackhat.com/bh-eu-12-Davis-HDMI
github.com/Pulse-Eight/libcec
hdmi.org
cec-o-matic.com/
p8-USB-HDMI-adapter

swig.org
github.com/hakimel/reveal.js

http://www.cec-o-matic.com/
https://github.com/hakimel/reveal.js
http://www.swig.org/
http://hdmi.org/
http://www.pulse-eight.com/store/products/104-usb-hdmi-cec-adapter.aspx
https://media.blackhat.com/bh-eu-12/Davis/bh-eu-12-Davis-HDMI-WP.pdf
https://github.com/Pulse-Eight/libcec

