
“Quantum” Classification of Malware

John Seymour
seymour1@umbc.edu

Charles Nicholas
nicholas@umbc.edu

July 14, 2015

Abstract

Quantum computation has recently become
an important area for security research, with
its applications to factoring large numbers
and secure communication. In practice, only
one company (D-Wave) has claimed to cre-
ate a quantum computer which can solve rel-
atively hard problems, and that claim has
been met with much skepticism. Regard-
less of whether it is using quantum e↵ects
for computation or not, the D-Wave archi-
tecture cannot run the standard quantum al-
gorithms, such as Grovers and Shors. The
D-Wave architecture is instead purported to
be useful for machine learning and for heuris-
tically solving NP-Complete problems.

We’ll show why the D-Wave and the ma-
chine learning problem for malware classifi-
cation seem especially suited for each other.
We also explain how to translate the classifi-
cation problem for malicious executables into
an optimization problem which a D-Wave
machine can solve. Specifically, using a 512-
qubit D-Wave Two processor, we show that
a minimalist malware classifier, with cross-

validation accuracy comparable to standard
machine learning algorithms, can be created.
However, even such a minimalist classifier in-
curs a surprising level of overhead.

1 Introduction

The D-Wave architecture is a unique ap-
proach to computing which utilizes quantum
annealing to solve discrete optimization prob-
lems. At the time of this writing, the ex-
tent to which the D-Wave machines utilize
quantum e↵ects for computational purposes
is a hotly debated topic. Regardless, the
D-Wave machine is not a general purpose
quantum computer; it cannot run well-known
quantum algorithms such as Shors or Grovers
algorithms. Applications for D-Wave ma-
chines instead include binary classification,
complex protein-folding models, and heuris-
tics for solving intractable problems such as
the Traveling Salesman Problem. We fo-
cus on one method for binary classification,
QBoost, first explained in [2]. This method
has been shown to outperform several stan-
dard techniques for classification, especially

1



in contexts where instances may be labeled
incorrectly. As malware datasets often have
this characteristic, the D-Wave might be es-
pecially suited for the problem of malware
classification.
Recently, D-Wave has released the D-Wave

Two, a quantum annealer with up to 512
qubits, and a 1000 qubit machine is currently
being tested in D-Waves lab. D-Wave claims
that the number of qubits will continue to
scale for the forseeable future. More qubits
means more di�cult problems can be em-
bedded onto the chip directly, extending the
problem space that the D-Wave system can
natively support. The University of Mary-
land, Baltimore County has access to a D-
Wave Two processor with 496 working qubits,
called SYSTEM 6, and software for embed-
ding problems onto the chip.
The D-Wave chip consists of niobium loops

which act as qubits, and couplers which af-
fect both individual loops and pairs of loops.
Programming the D-Wave consists of choos-
ing the weights for these couplers. The D-
Wave natively solves problems of the follow-
ing form:

X

i

aiqi +
X

i,j

bijqiqj (1)

where the ai and the bi values are
given, and the D-Wave returns the list of
qi 2{� 1, 1} that minimize the above summa-
tion. Translating a real-world problem into
this form reduces to the Graph Minor Em-
bedding problem, which is NP-Complete in
the general case. However, several heuristics
exist which may be able to do so for specific
instances. In particular, QBoost involves a

dialogue between a classical Tabu search and
the D-Wave chip. Figure 1 gives a graphical
depiction of this equation, with weights set,
based on the SYSTEM 6 processor.

One major di↵erence between the D-Wave
machines and the D-Wave simulator is the
presence of dead qubits in the actual ma-
chines. In Figure 1, there are several nodes
which are absent from the graph. Program-
mers cannot interact with them, as they are
defects in the actual chip. This influences
the possible values for variables in equation
1, hence, it limits the potential problems that
the chip can solve. D-Wave chips can have
di↵erent numbers and placements of dead
qubits.

Boosting is a machine learning technique
which takes a set of weak classifiers, or classi-
fiers with only a slightly-better-than-random
accuracy, and combines them into a strong
classifier with much higher accuracy. QBoost
di↵ers from standard boosting algorithms as
each weak classifier has the same weight, and
the final strong classifier is created simply by
taking the majority vote from the weak clas-
sifiers comprising it. QBoost searches over
the subsets of weak classifiers and attempts
to minimize the error of the strong classifier
through inclusion or exclusion of weak classi-
fiers. This error is represented through a loss
function: the smaller the loss, the better the
quality of the classifier. [1] has one example
of a useable loss function, which can be found
in the following equation.

2



Figure 1: Graphical depiction for the SYSTEM 6 processor, known as the Chimera graph.

3



G(w) =
1

4

SX

s=1

(sign[
DX

j=1

wjFj(xs)]�ys)
2+�

DX

j=1

wj

(2)

Briefly, the 1
4

SP
s=1

(sign[
DP
j=1

wjFj(xs)] � ys)2

corresponds to the number of errors a given

strong classifier will make, and �

DP
j=1

wj serves

as a regularization constant to prioritize
strong classifiers which use smaller numbers
of features.

2 Methods

There are a few publically available cor-
pera for malicious executables. We use Vx-
Heaven, which consists of 65 gigabytes of
malware, labeled by type (e.g. banking tro-
jans). There is, however, no standard dataset
for benign software. We supplement Vx
Heaven with Windows XP, Windows 7, Cyg-
win, and Sourceforge executables as in pre-
vious work.[4] We then resample the corpus,
because the raw corpus consists of many more
malicious executables than benign executa-
bles. Thus, a classifier which simply classi-
fies all executables as malware would have a
near-perfect accuracy on the raw corpus, but
it would not be useful at all in practice. Re-
sampling also has the side-e↵ect of reducing
the time to build classifiers on the corpus. We
resample with replacement, meaning it is pos-
sible to select an executable multiple times
and have multiple copies of that executable
in the resampled corpus. Resampling with

replacement, as opposed to without replace-
ment, has several good statistical properties
in terms of the resulting distribution.
We choose to use 3-grams as the basis of

our classifier. We specifically chose 3-grams
because they are easy to generate, because
similar features have been used before for
classification of malware, and because it is
easy to obtain a large list of binary features
which can be trivially translated into weak
classifiers. A classifier built using only 3-
grams will not have accuracy comparable to
malware classifiers currently used in industry.
However, our goal here is to compare QBoost
to standard machine learning algorithms, and
the classifiers we build even with these sim-
plistic features will be complex enough for
comparison.
Blackbox is software, written by D-Wave,

which implements the QBoost algorithm.
Though Blackbox has been evaluated before,
evaluations have primarily focused on solving
intractable problems.[3] They use Blackbox
with a timeout of 30 minutes and using at
most 107 state evaluations. We would like to
tighten this bound, both because the stan-
dard algorithms we compare against com-
plete in under a second, and because our al-
lotted time on the D-Wave machine is lim-
ited. A pilot study, based on minimizing the
sum function for a number of variables, gave
guidance on setting these parameters. In par-
ticular, we found that the D-Wave was in-
capable of finding an optimal solution to a
problem with 12 variables given the default
timeout of 10 seconds. This means that our
D-Wave classifier will likely need more time
to build than standard classifiers. We press

4



on, in case the accuracy increase justifies the
increased time cost of the D-Wave system.
Based on the pilot study, we collect the top

16 3-grams from the benign executables and
16 from the malicious executables to use as
features. We then create a vector of weak
classifiers: the first 32 weak classifiers clas-
sify instances in which the 3-gram is present
as malware, and the next 32 weak classi-
fiers classify instances in which the 3-gram
is present as benign. For a given selection of
weak classifiers, we calculate the loss using
Equation 2 and return this loss as the value
of the objective function. For comparison, we
use the same features to create multiple clas-
sifiers in WEKA, a popular tool for machine
learning.

3 Results

We wish to test the e↵ectiveness of the mal-
ware classifier produced by the D-Wave ma-
chine. To do so, we perform 10-fold cross-
validation: we build the classifier on each set
of 9 folds and evaluate the D-Wave classi-
fier on the remaining fold, and then average
these accuracies together. For each fold, we
record the accuracy of the classifier, the time
to build the classifier, and the number of fea-
tures selected in the final classifier.
We compare the D-Wave classifier to the

same classifier using the D-Wave simulator,
which is classical in nature. We also compare
to three classical models built using WEKA:
Adaboost, J48 (Decision Tree), and Ran-
dom Forest. We choose Adaboost as it and
QBoost are compared to previously, and we

chose J48 and Random Forest as they have
been shown to have results in the field of
malware analysis. Again, we expect accura-
cies lower than state-of-the-art classification
systems, as we have restricted the classifica-
tion problem significantly in order to embed
it onto the D-Wave chip. Table 1 compares
the accuracies and time taken to build each
of the di↵erent classifiers. Unlike in [5], the
timing in Table 1 for the D-Wave machine is
underreported; we chose to only include time
that the D-Wave was running to remove the
latency caused by the network, and thus the
time that the classical system was creating
D-Wave instructions is not accounted for in
the table.
We were able to achieve a cross-validation

accuracy of 80% using the actual D-Wave
machine, which outperformed WEKA’s Ad-
aboost and underperformed WEKA’s Ran-
domForest. However, given the substantial
time to build the classifier, we were not able
to perform multiple runs on the D-Wave ma-
chine to know whether this run was an out-
lier; as such, these accuracies should not be
used directly as benchmarks for comparison.
This accuracy comes at a great cost: the D-
Wave classifier took roughly 10,000 times as
long to create. Further, the standard ma-
chine learning algorithms scale, but the D-
Wave algorithm must be greatly restricted
in order to create a classifier in a reasonable
amount of time.
It is interesting to note that the simula-

tor needed less time to train than the actual
chip. This might be because the simulator
uses the maximum number of nodes in the
Chimera graph, whereas the actual chip has

5



Classifier Cross-fold Accuracy Average Time to Build (Seconds)
D-Wave 0.80 536.32
D-Wave Simulator 0.802 451.62
Adaboost 0.768 0.02
J48 0.796 0.03
RandomForest 0.814 0.05

Table 1: Cross-fold accuracy and time to build classifiers.

dead qubits it must work around.

4 Conclusions

We have shown it is possible to create a
malware classifier using a D-Wave machine
along with the Blackbox embedding software.
Furthermore, we have shown this classifier
has 10-fold cross-validation accuracy compa-
rable to classical classifiers using the same
features. However, there is significant over-
head in building such a classifier using Black-
box. Our results show that, at this time and
for this domain, this method for classification
does not outperform other methods enough
to justify the cost. Whether the D-Wave will
outpace classical speedup remains to be seen.
There are, however, potentially other uses

for this method. We noticed during our ex-
periment that the D-Wave often achieved the
same accuracy as the classical methods, but
using a fewer number of features. This is con-
sistent with previous work.[2] It is possible
that Blackbox is best suited for preprocess-
ing of data. The question of why the D-Wave
and the simulator seem to use less features
in their classifiers should be investigated fur-
ther; exploiting this characteristic may pro-

vide a new use for the system in feature and
instance selection.
Some interesting paths for malware re-

search are introduced in this paper as well.
There are few public standards for classifi-
cation in the malware domain. There are
several malware datasets (even if potentially
flawed), but there is no standard for benign
datasets, and the features for classification
are generally not public. Creation of a stan-
dard benchmarking corpus of malicious and
benign executables is long overdue.

References

[1] Binary classification using a d-wave one
system. http://www.dwavesys.com/

en/dev-tutorial-qbc.html. Accessed:
2013-06-13.

[2] V. S. Denchev. Binary classification with

adiabatic quantum optimization. PhD
thesis, Purdue University, 2013.

[3] C. C. McGeoch and C. Wang. Experi-
mental evaluation of an adiabiatic quan-
tum system for combinatorial optimiza-
tion. In Proceedings of the ACM Inter-

national Conference on Computing Fron-

6



tiers, CF ’13, pages 23:1–23:11, New
York, NY, USA, 2013. ACM.

[4] J. Seymour and C. Nicholas. Overgener-
alization in feature set selection for clas-
sification of malware. Technical report,
UMBC CSEE Technical Report, TR-CS-
14-06, September, 2014, 2014.

[5] J. Seymour and C. Nicholas. Quantum
classification of malware. Master’s the-
sis, University of Maryland, Baltimore
County, 2014.

7


