
1

How To Shot Web
(Better hacking in 2015)

2

Jason Haddix

● Bugcrowd
● Director of Technical Ops
● Hacker & Bug hunter
● #1 on all-time leaderboard bugcrowd 2014

whoami

@jhaddix

3

Hack
Stuff

Better
(and practically)

What this talk’s about...

And…LOTS of memes…. only some are funny

4

Step 1: Cut a hole in a box... j/k

Step 1: Started with my bug hunting methodology
Step 2: Parsed some of the top bug hunters’ research (web/mobile only for now)
Step 3: Create kickass preso

Topics? BB philosophy shifts, discovery
techniques, mapping methodology, parameters
oft attacked, useful fuzz strings, bypass or filter

evasion techniques, new/awesome tooling

More Specifically

5

Philosophy

6

Differences from standard testing

Single-sourced Crowdsourced

● looking mostly for
common-ish vulns

● not competing with
others

● incentivized for count
● payment based on sniff

test

● looking for vulns that
aren’t as easy to find

● racing vs. time
● competitive vs. others
● incentivized to find

unique bugs
● payment based on

impact not number of
findings

7

The regular methodologies

8

Discovery

9

Find the road less traveled
^ means find the application (or parts of an
application) less tested.

1. *.acme.com scope is your friend
2. Find domains via Google (and others!)

a. Can be automated well via recon-ng
and other tools.

3. Port scan for obscure web servers or
services (on all domains)

4. Find acquisitions and the bounty
acquisition rules
a. Google has a 6 month rule

5. Functionality changes or re-designs
6. Mobile websites
7. New mobile app versions

10

Tool: Recon-ng script (enumall.sh)

https://github.com/jhaddix/domain

11

12

LMGTFY

13

LMGTFY

14

15

https://www.facebook.com/notes/phwd/facebook-bug-bounties/707217202701640

https://www.facebook.com/notes/phwd/facebook-bug-bounties/707217202701640
https://www.facebook.com/notes/phwd/facebook-bug-bounties/707217202701640
https://www.facebook.com/notes/phwd/facebook-bug-bounties/707217202701640

16

Port scanning is not just for Netpen!

A full port scan of all your new found targets will usually
yield #win:

● separate webapps
● extraneous services
● Facebook had Jenkins Script console with no auth
● IIS.net had rdp open vulnerable to MS12_020

 nmap -sS -A -PN -p- --script=http-title dontscanme.bro

^ syn scan, OS + service fingerprint, no ping, all ports,
http titles

Port Scanning!

17

Mapping

18

Mapping tips

● Google
● *Smart* Directory Brute Forcing

● RAFT lists (included in Seclists)
● SVN Digger (included in Seclists)
● Git Digger

● Platform Identification:
● Wapplyzer (Chrome)
● Builtwith (Chrome)
● retire.js (cmd-line or Burp)
● Check CVE’s

● Auxiliary
● WPScan
● CMSmap

https://github.com/danielmiessler/SecLists/tree/master/Discovery
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists/tree/master/Discovery
https://www.netsparker.com/blog/web-security/svn-digger-better-lists-for-forced-browsing/
https://github.com/danielmiessler/SecLists
https://www.netsparker.com/blog/web-security/svn-digger-better-lists-for-forced-browsing/
https://github.com/wick2o/gitdigger
https://github.com/wick2o/gitdigger
https://wappalyzer.com/
https://wappalyzer.com/
https://chrome.google.com/webstore/detail/builtwith-technology-prof/dapjbgnjinbpoindlpdmhochffioedbn?hl=en
https://chrome.google.com/webstore/detail/builtwith-technology-prof/dapjbgnjinbpoindlpdmhochffioedbn?hl=en
http://retirejs.github.io/retire.js/
http://retirejs.github.io/retire.js/
http://wpscan.org/
http://wpscan.org/
https://github.com/Dionach/CMSmap
https://github.com/Dionach/CMSmap

19

Directory Bruteforce Workflow

After bruteforcing look for other status codes indicating you are denied or require auth then
append list there to test for misconfigured access control.

Example:

GET http://www.acme.com - 200
GET http://www.acme.com/backlog/ - 404
GET http://www.acme.com/controlpanel/ - 401 hmm.. ok
GET http://www.acme.com/controlpanel/[bruteforce here now]

http://www.acme.com
http://www.acme.com
http://www.acme.com
http://www.acme.com

20

Mapping/Vuln Discovery using OSINT

Find previous/existing problem:
● Xssed.com
● Reddit XSS - /r/xss
● Punkspider
● xss.cx
● xssposed.org
● twitter searching
● ++

Issues might already reported but use the flaw area
and injection type to guide you to further injections or
filter bypass.

http://www.xssed.com/
http://www.xssed.com/
https://www.reddit.com/r/xss/
https://www.reddit.com/r/xss/
https://www.punkspider.org/
https://www.punkspider.org/
http://xss.cx/#gsc.tab=0
http://xss.cx/#gsc.tab=0
https://www.xssposed.org/
https://www.xssposed.org/

21

Intrigue

New OSINT/Mapping project, intrigue:

● 250+ bounty programs
● Crawl
● DNS info + bruteforce
● Bounty metadata (links, rewards, scope)
● API

http://github.com/intrigueio

22

23

Intrigue and Maps projects

New OSINT/Mapping project, intrigue:

● 250+ bounty programs
● Crawl
● DNS info + bruteforce
● Bounty metadata (links, rewards, scope)
● API

http://github.com/intrigueio

24

Crawling

Using + Ruby + Anemone + JSON + Grep

$cat test_target_json.txt | grep redirect

https://test_target/redirect/?url=http://twitter.com/...
https://test_target/redirect/?url=http://facebook.com/...
https://test_target/redirect/?url=http://pinterest.com/...

https://test_target/redirect/?url=http://twitter.com
https://test_target/redirect/?url=http://twitter.com
https://test_target/redirect/?url=http://twitter.com
https://test_target/redirect/?url=http://twitter.com

25

Intrigue Tasks

Using + Ruby + Anemone + JSON + Grep

● Brute force
● Spider
● Nmap
● etc

26

27

28

Auth and Session

29

Auth (better be quick)
Auth Related (more in logic, priv, and transport sections)

● User/pass discrepancy flaw
● Registration page harvesting
● Login page harvesting
● Password reset page harvesting
● No account lockout
● Weak password policy
● Password not required for account updates
● Password reset tokens (no expiry or re-use)

30

Session (better be quick)
Session Related

● Failure to invalidate old cookies
● No new cookies on login/logout/timeout
● Never ending cookie length
● Multiple sessions allowed
● Easily reversible cookie (base64 most often)

31

Tactical Fuzzing - XSS

32

XSS

Core Idea: Does the page functionality display something to the users?

For time sensitive testing the 80/20 rule
applies. Many testers use Polyglot payloads.
You probably have too!

33

XSS

';alert(String.fromCharCode(88,83,83))//';alert(String.
fromCharCode(88,83,83))//";alert(String.fromCharCode
(88,83,83))//";alert(String.fromCharCode(88,83,83))//--

></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))
</SCRIPT>

Multi-context, filter bypass based polyglot payload #1 (Rsnake XSS Cheat Sheet)

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

34

XSS

'">><marquee></marquee>"
></plaintext\></|\><plaintext/onmouseover=prompt(1)

><script>prompt(1)</script>@gmail.com<isindex
formaction=javascript:alert(/XSS/) type=submit>'-->"

></script><script>alert(1)</script>"><img/id="confirm(
1)"/alt="/"src="/"onerror=eval(id&%23x29;>'"><img src="http:

//i.imgur.com/P8mL8.jpg">

Multi-context, filter bypass based polyglot payload #2 (Ashar Javed XSS Research)

http://slides.com/mscasharjaved/cross-site-scripting-my-love#/

35

XSS

“ onclick=alert(1)//<button ‘ onclick=alert(1)//> */ alert(1)//

Multi-context, filter bypass based polyglot payload #3 (Mathias Karlsson)

http://www.slideshare.net/MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-hackpra

36

Other XSS
Observations

Input Vectors

Customizable Themes & Profiles via CSS

Event or meeting names

URI based

Imported from a 3rd party (think Facebook integration)

JSON POST Values (check returning content type)

File Upload names

Uploaded files (swf, HTML, ++)

Custom Error pages

fake params - ?realparam=1&foo=bar’+alert(/XSS/)+’

Login and Forgot password forms

37

SWF Parameter XSS
Common Params:

Common Params:

onload, allowedDomain, movieplayer, xmlPath, eventhandler, callback (more on OWASP page)

Common Injection Strings:

\%22})))}catch(e){alert(document.domain);}//

"]);}catch(e){}if(!self.a)self.a=!alert(document.domain);//

"a")(({type:"ready"}));}catch(e){alert(1)}//

38

SWF Parameter XSS

https://github.com/cure53/flashbang
https://github.com/cure53/flashbang

39

Tactical Fuzzing - SQLi

40

SQL Injection

Core Idea: Does the page look like it might need to call on stored data?

There exist some SQLi polyglots, i.e;

SLEEP(1) /*‘ or SLEEP(1) or ‘“ or SLEEP(1) or “*/

Works in single quote context, works in double quote context, works in “straight into query”
context! (Mathias Karlsson)

http://www.slideshare.net/MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-hackpra

41

SQL Injection

You can also leverage the large database of
fuzzlists from Seclists here:

https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/SecLists

42

SQL Injection Observations

Blind is predominant, Error based is highly unlikely.

‘%2Bbenchmark(3200,SHA1(1))%2B’
‘+BENCHMARK(40000000,SHA1(1337))+’

 SQLMap is king!

● Use -l to parse a Burp log file.
● Use Tamper Scripts for blacklists.
● SQLiPy Burp plugin works well to instrument SQLmap quickly.

Lots of injection in web services!

Common Parameters or Injection points

ID

Currency Values

Item number values

sorting parameters (i.e order, sort, etc)

JSON and XML values

Cookie values (really?)

Custom headers (look for possible
integrations with CDN’s or WAF’s)

REST based Services

https://forum.bugcrowd.com/t/sqlmap-tamper-scripts-sql-injection-and-waf-bypass/423
https://portswigger.net/bappstore/ShowBappDetails.aspx?uuid=f154175126a04bfe8edc6056f340f52e
https://portswigger.net/bappstore/ShowBappDetails.aspx?uuid=f154175126a04bfe8edc6056f340f52e

43

SQLmap SQLiPy

44

Best SQL injection resources
DBMS Specific Resources

mySQL PentestMonkey's mySQL injection cheat sheet
Reiners mySQL injection Filter Evasion Cheatsheet

MSSQL EvilSQL's Error/Union/Blind MSSQL Cheatsheet
PentestMonkey's MSSQL SQLi injection Cheat Sheet

ORACLE PentestMonkey's Oracle SQLi Cheatsheet

POSTGRESQL PentestMonkey's Postgres SQLi Cheatsheet

Others Access SQLi Cheatsheet
PentestMonkey's Ingres SQL Injection Cheat Sheet
pentestmonkey's DB2 SQL Injection Cheat Sheet
pentestmonkey's Informix SQL Injection Cheat Sheet
SQLite3 Injection Cheat sheet
Ruby on Rails (Active Record) SQL Injection Guide

http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
https://websec.wordpress.com/2010/12/04/sqli-filter-evasion-cheat-sheet-mysql/
https://websec.wordpress.com/2010/12/04/sqli-filter-evasion-cheat-sheet-mysql/
http://evilsql.com/main/page2.php
http://pentestmonkey.net/cheat-sheet/sql-injection/mssql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mssql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/postgres-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/postgres-sql-injection-cheat-sheet
http://nibblesec.org/files/MSAccessSQLi/MSAccessSQLi.html
http://nibblesec.org/files/MSAccessSQLi/MSAccessSQLi.html
http://pentestmonkey.net/cheat-sheet/sql-injection/ingres-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/ingres-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/db2-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/db2-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/informix-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/informix-sql-injection-cheat-sheet
https://sites.google.com/site/0x7674/home/sqlite3injectioncheatsheet
https://sites.google.com/site/0x7674/home/sqlite3injectioncheatsheet
http://rails-sqli.org/
http://rails-sqli.org/

45

Tactical Fuzzing - FI & Uploads

46

Local file inclusion
Core Idea: Does it (or can it) interact with the server file system?

Liffy is new and cool here but you can also use Seclists: Common Parameters or Injection points

file=

location=

locale=

path=

display=

load=

read=

retrieve=

https://github.com/rotlogix/liffy
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/JHADDIX_LFI.txt
https://github.com/rotlogix/liffy

47

Malicious File Upload ++

This is an important and common attack vector in this type of testing

A file upload functions need a lot of protections to be adequately secure.

Attacks:

● Upload unexpected file format to achieve code exec (swf, html, php, php3, aspx, ++) Web
shells or...

● Execute XSS via same types of files. Images as well!
● Attack the parser to DoS the site or XSS via storing payloads in metadata or file header
● Bypass security zones and store malware on target site via file polyglots

48

Malicious File Upload ++

File upload attacks are a whole presentation. Try this one to get a feel for bypass techniques:

● content type spoofing
● extension trickery
● File in the hole! presentaion - http://goo.gl/VCXPh6

http://goo.gl/VCXPh6

49

Malicious File Upload ++

As referenced file polyglots can be used
to store malware on servers!

See @dan_crowley ‘s talk: http://goo.
gl/pquXC2

and @angealbertini research: corkami.
com

http://goo.gl/pquXC2
http://goo.gl/pquXC2
http://goo.gl/pquXC2
https://twitter.com/angealbertini
http://corkami.com
http://corkami.com
http://corkami.com

50

Remote file includes and redirects

Look for any param with another web address
in it. Same params from LFI can present here too.

Common blacklist bypasses:
● escape "/" with "\/" or “//” with “\/\/”
● try single "/" instead of "//"
● remove http i.e. "continue=//google.com"
● “/\/\” , “|/” , “/%09/”
● encode, slashes
● ”./” CHANGE TO “..//”
● ”../” CHANGE TO “….//”
● ”/” CHANGE TO “//”

Redirections Common Parameters or Injection
points

dest=

continue=

redirect=

url= (or anything with “url” in it)

uri= (same as above)

window=

next=

51

Remote file includes and redirects

RFI Common Parameters or Injection points

File= document=

Folder= root=

Path= pg=

style= pdf=

template=

php_path=

doc=

52

CSRF

53

CSRF

Everyone knows CSRF but the TLDR
here is find sensitive functions and
attempt to CSRF.

Burps CSRF PoC is fast and easy for
this:

54

CSRF

Many sites will have CSRF protection, focus on CSRF bypass!

Common bypasses:

● Remove CSRF token from request
● Remove CSRF token parameter value
● Add bad control chars to CSRF parameter value
● Use a second identical CSRF param
● Change POST to GET

Check this out...

55

CSRF

Debasish Mandal wrote a python tool to automate finding CSRF bypasses called
Burpy.

Step 1: Enable logging in Burp. Crawl a site with Burp completely executing all
functions.

Step 2: Create a template...

https://github.com/debasishm89/burpy
https://github.com/debasishm89/burpy

56

57

CSRF

Step 3: Run burpy on Burp log file..

Logic:

1. Parse burp log file
2. re-request everything instrumenting

4/5 attacks in previous slide
3. diff responses
4. alert on outliers
5. profit

58

59

60

CSRF

Or focus on pages without the token in Burp:

https://github.
com/arvinddoraiswamy/mywebappscripts/blob/master/BurpExtensions/csrf_token_d
etect.py

https://github.com/arvinddoraiswamy/mywebappscripts/blob/master/BurpExtensions/csrf_token_detect.py
https://github.com/arvinddoraiswamy/mywebappscripts/blob/master/BurpExtensions/csrf_token_detect.py
https://github.com/arvinddoraiswamy/mywebappscripts/blob/master/BurpExtensions/csrf_token_detect.py
https://github.com/arvinddoraiswamy/mywebappscripts/blob/master/BurpExtensions/csrf_token_detect.py
https://github.com/arvinddoraiswamy/mywebappscripts/blob/master/BurpExtensions/csrf_token_detect.py

61

CSRF

CSRF Common Critical functions

Add / Upload file Password change

Email change Transfer Money /
Currency

Delete File Profile edit

62

Privilege, Transport, Logic

63

Privilege
Often logic, priv, auth bugs are blurred.

Testing user priv:

1. admin has power
2. peon has none
3. peon can use function only meant for

admin

64

Privilege
1. Find site functionality that is restricted to certain

user types
2. Try accessing those functions with lesser/other

user roles
3. Try to directly browse to views with sensitive

information as a lesser priv user

Autorize Burp plugin is pretty neat here...

https://github.com/Quitten/Autorize

Common Functions or Views

Add user function

Delete user function

start project / campaign / etc function

change account info (pass, CC, etc) function

customer analytics view

payment processing view

any view with PII

https://github.com/Quitten/Autorize
https://github.com/Quitten/Autorize

65

1. Browse using high priv user
2. Login with a lower priv user

3. Burp Plugin re-requests to see if low priv can access high priv

66

Insecure direct object references
IDORs are common place in bounties, and hard
to catch with scanners.

Find any and all UIDs
● increment
● decrement
● negative values
● Attempt to perform sensitive functions

substituting another UID
○ change password
○ forgot password
○ admin only functions

67

Idor’s

Common Functions , Views, or Files

Everything from the CSRF Table, trying cross account attacks

Sub: UIDs, user hashes, or emails

Images that are non-public

Receipts

Private Files (pdfs, ++)

Shipping info & Purchase Orders

Sending / Deleting messages

68

69

Transport

Most security concerned sites will enable HTTPs. It’s
your job to ensure they’ve done it EVERYWHERE. Most
of the time they miss something.

Examples:

● Sensitive images transported over HTTP
● Analytics with session data / PII leaked over HTTP

70

Transport

https://github.com/arvinddoraiswamy/mywebappscripts/tree/master/ForceSSL

https://github.com/arvinddoraiswamy/mywebappscripts/tree/master/ForceSSL
https://github.com/arvinddoraiswamy/mywebappscripts/tree/master/ForceSSL

71

Logic
Logic flaws that are tricky, mostly manual:

● substituting hashed parameters
● step manipulation
● use negatives in quantities
● authentication bypass
● application level DoS
● Timing attacks

72

Mobile

73

Data Storage

Its common to see mobile apps not applying
encryption to the files that store PII. Common places to find PII unencrypted

Phone system logs (avail to all apps)

webkit cache (cache.db)

plists, dbs, etc

hardcoded in the binary

74

Quick spin-up for iOS

Daniel Mayers idb tool:

https://github.com/dmayer/idb

75

Logs!

76

Auxiliary

77

The vulns formerly known as “noise”

● Content Spoofing or HTML injection
● Referer leakage
● security headers
● path disclosure
● clickjacking
● ++

78

How to test a web app in n minutes

How can you get maximum results within a
given time window?

79

Data Driven Assessment (diminishing return FTW)

1. Visit the search, registration, contact, and password reset, and comment
forms and hit them with your polyglot strings

2. Scan those specific functions with Burp’s built-in scanner
3. Check your cookie, log out, check cookie, log in, check cookie. Submit old

cookie, see if access.
4. Perform user enumeration checks on login, registration, and password

reset.
5. Do a reset and see if; the password comes plaintext, uses a URL based

token, is predictable, can be used multiple times, or logs you in
automatically

6. Find numeric account identifiers anywhere in URL and rotate them for
context change

7. Find the security-sensitive function(s) or files and see if vulnerable to
non-auth browsing (idors), lower-auth browsing, CSRF, CSRF protection
bypass, and see if they can be done over HTTP.

8. Directory brute for top short list on SecLists
9. Check upload functions for alternate file types that can execute code (xss

or php/etc/etc)

~ 15 minutes

80

Things to take with you…

1. Crowdsourced testing is different enough to pay attention to
2. Crowdsourcing focuses on the 20% because the 80% goes quick
3. Data analysis can yield the most successfully attacked areas
4. A 15 minute web test, done right, could yield a majority of your critical vulns
5. Add polyglots to your toolbelt
6. Use SecLists to power your scanners
7. Remember to periodically refresh your game with the wisdom of other techniques and

other approaches

Follow these ninjas who I profiled: https://twitter.com/Jhaddix/lists/bninjas

https://twitter.com/Jhaddix/lists/bninjas

81

Gitbook project: The Bug Hunters Methodology

This preso ended up to be way too much to fit in an 45min talk so... we turned it into a Git
project! (if you are reading this from the Defcon DVD check my twitter or Github for linkage)

● 50% of research still unparsed
● More tooling to automate
● XXE and parser attacks
● XSRF
● Captcha bypass
● Detailed logic flaws
● More mobile

https://twitter.com/Jhaddix
https://github.com/jhaddix

82

Meme Count:

13

83

Attribution and Thanks

84

Tim Tomes - Recon-ng

Joe Giron - RFI params

Soroush Dalili - File in the Hole preso

Mathias Karlsson - polyglot research

Ashar Javed - polyglot/xss research

Ryan Dewhurst & Wpscan Team

Bitquark - for being a ninja, bsqli string

rotlogix - liffy LFI scanner

Arvind Doraiswamy - HTTPs, CSRF Burp Plugins

Barak Tawily - Autorize burp plugin

the RAFT list authors

Ferruh Mavituna - SVNDigger

Jaime Filson aka wick2o - GitDigger

Robert Hansen aka rsnake - polyglot / xss

Dan Crowley - polyglot research

Daniel Miessler - methodology, slide, and data contributions

My awesome team at Bugcrowd (Jon, Tod, Shpend, Ben, Grant, Fatih, Patrik, Kati, Kym, Abby, Casey, Chris, Sam, ++)

All the bug hunting community!!!

