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Disclaimer

= Research... own time... my opinions... not my
employers...

= The information and the code provided in this
presentation is to be used for educational purposes only.

= | am in no way responsible for any misuse of the
information provided.

= |n no way should you use the information to cause any
kind of damage directly or indirectly.
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VM#2 Detect BUS contention
Slow| Fast| Fast| Fast| Slow
1 | o | O | o | 1
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Overview

= Goal
— Practical implementation ( not just some research stuff )

= How
— Abusing X86 shared resources
— Cache line encoding / decoding
— Getting around the HW pre-fetcher
— Data persistency and noise. What can be done?
— Guest to host page table de-obfuscation. The easy way
— High precision inter-VM synchronization: =»All about timers

= Detection / Mitigation



Shared resource: HT enabled

Pipeline contention
“previous example”

L1 modulation
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Shared resource: HT disabled

" #1<\>

VM #2< >

L3 modulation

http://it.slashdot.org/story/05/05/17/201253/hyper-threading-linus-torvalds-vs-colin-perciv



Shared resource: Multi socket
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cLo | CL1 | CL2 | CL3 | CL4
1 | 0o | 0 | 0 | 1
Load | Flush| Flush| Flush| Load



VM#1l encode a pattern in cache line
cLo | CL1 | CL2 | CL3 | CL4
1 | 0o | 0 | 0 | 1
Load | Flush| Flush| Flush| Load

VM#2 decode the cache line access time
CLO | CL1 | CL2 | CL3 | CL4
Fast| Slow | Slow | Slow | Fast
1 | 0 | 0 | 0 | 1
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= NOVM

= Simple Client / Server test
program

= Cache Line from shared
memory directly

= Mutex for inter-process
signaling

= Client encode a pattern
= Server decode

= =»Something weird?
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« Simple test:

* Flush CLO -> CL100

« Measure CL access time
for CLO -> CL100

« =» Long latency for all CL
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Prefetching in general means bringing data or instructions from memory into
the cache before they are needed

The Core™ |7 processor and Xeon® 5500 series processors, for example,
have some prefetchers that bring data into the L1 cache and some that bring
data into the L2.

There are also different algorithms — some monitor data access patterns for a
particular cache and then try to predict what addresses will be needed in
the future.
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= Simple trick that
randomized CL access

= CL access random within a
page

= CL access random across
pages

= This apparently manage to
confuse the HW prefetcher!
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= What happen if we wait
longer before decoding?

= Wait
= Wait
= Wait

= Encoded data in the
cache evaporates pretty
quickly.
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= L2 OR L3 cache are
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= There is another layer of
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Virtualizing Virtual Mgmory
Shadow Page Tables
M1

Process 2

Process 1




= Clientin VM#1, Server in
VM#2

= L2 OR L3 cache are

tagged by the physical
address but in a VM the
physical address that
you see has nothing to
do with the real physical
address on bare metal
that the cache is using.

= There is another layer of
translation

This is a complex
problem to solve
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their memory. If any memory regions or pages are identical, KSM merge them into a
single page physical page on bare-metal host kernel.
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Page de-duplication

KSM enables the kernel to examine two or more already running programs and compare
their memory. If any memory regions or pages are identical, KSM merge them into a
single page physical page on bare-metal host kernel.

If one of the programs wants to modify a shared page KSM kicks in and un-merge it.

This is useful for virtualization with KVM. Once the guest is running the contents of the
guest operating system image can be shared when guests are running the same
operating system or applications.
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= Page table de-
obfuscation

Z" The idea is to create a per-
page unique pattern in
memory that is the same
across client and server

= So that on host KSM
kicks in and do the page
de-duplication for us
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= There is no
synchronization primitive

%3.‘) across processes
¢ running in different VM
?2??

= In reality there is
mechanism to do that ( EX
ivshmem ) but this is not
enabled in production env

"2y = We need something to
replace the mutex



-
Option #1

= Forget about the
synchronization aspect and
hope for the best

= With error correction we
can achieve some data
transmission.

= Very low bit rates

= CPU consumption is low



-
Option #2

= Busy loop on each side
= Client faster than Server

= At some point there will be
an overlap and the server
will pickup the signal

= CPU consumption is High
= OK bit rates

= We want <1% CPU usage
to remain undetected.
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Option #3

Define a common period
‘T,

Client-Server lock into
phase

Server sends a sync
pattern

Client sweep over the
period in search for the
sync
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Option #3

= Once the sync is found the
phase is adjusted are we
are ready for transmission.

= For that to work we need a
monotonic pulse

= Some jitter but not too
much ( Lots of noise in
VMs = data evaporates
out of the cache very
quickly )
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= How to achieve a
monotonic pulse?

= Timers
= Why timers?

= We need to sleep = Avoid
detection ( < 1% CPU
usage )



Frequency

= How to achieve a

Guest_latency

100000 e e monotonic pulse?
= Timers
10000 |
= Why timers?
e = We need to sleep = Avoid
| detection ( < 1% CPU
0 ': usage )
10 |
1 10 100 1000 10000

Latency[usSec]
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= The idea here is to do
padding up to some value
above the maximum jitter
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= The idea here is to do
padding up to some value
above the maximum jitter

= The problem here is that
the padding is subject to
noise

= |n other word more time
you spend trying to
immunize yourself to noise
more noise you end up
accumulating
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= The idea here is to do
padding up to some value
above the maximum jitter

= The problem here is that
the padding is subject to
noise

= |n other word more time
you spend trying to
immunize yourself to noise
more noise you end up
accumulating

= Padding consume CPU

= By stretching the timer
period it's easy to stay
under 1% of CPU usage
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= |t's a tricky problem but at
the end | got it right!

= |n short the padding is
using a calibrated software
loop that is kept in check
with the TSC

= Assume 2.4Ghz machine;

= On aidle system:
~50 cycle = 20 nSec

= On aloaded system
~300 cycle =120 nSec

Timers:
= 100uSec = 240 000 cycle

= 10uSec = 24 000 cycle (
best case )



Recap

= Encoding / decoding based on memory access time
— (1 =slow, 0 =fast)

Got rid of the HW prefetching (without disabling it from BIOS!)
— ( randomized the access to cache lines / pages )

* Physical memory pages that are shared across VM

« Thanks to KSM ©

PLL and high precision inter-VM synchronization

« ( Compensated timer <120 nSec jitter )

Time for a demo!
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Mitigation
= Disable page-deduplication ( KSM ) / Per-VM policy
— No inter-VM shared read-only pages
— Flush ‘clflush’ and reload won’t work
— No OS / Application fingerprinting ( de-duplication page-fault )
— Higher memory cost

= X86 ‘clflush’ instruction: Privilege?
— Microcode?

= Co-location policy ( per-core / per-socket / per-box )



Detection

= Hardware counter
= Inter-VM scheduling “abnormality”

= TSC related “abnormality”



Thank you!



