NI
CISCO

Inter-VM data exfiltration

The art of cache timing covert
channel on x86 multi-core

Etienne Martineau

Kernel Developer

August 2015

VM #2 <. D> VM £
“server” T .* “client”

Disclaimer

= Research... own time... my opinions... not my
employers...

= The information and the code provided in this
presentation is to be used for educational purposes only.

= | am in no way responsible for any misuse of the
information provided.

= |n no way should you use the information to cause any
kind of damage directly or indirectly.

About me

TIIr
CISCO

Fe P —ankp feai=?
80 0
V-B=0 B-dA =0 o N
Vx b-- f— _aB :ﬁ (is = 7(‘I¢Jj o 7 7 k 7
a1 ot
Vo I .1 IE _[B A5 = pgi+ J'f, dA
£,C - dt 9

Hyper-threaded

vCPUO
200000
200083
210768
200096
200072
187312
204776
186996
200016
200088
200084
200076
200084
200240
204588
200000

vCPU1
200228
200084
193512
200084
200100
226556
205364
231952
200176
200084
200088
200096
200083
191980
205536
200204

SuUM

400228
400172
404280
400180
400172
413868
410140
418948
400192
400172
400172
400172
400172
392220
410124
400204

vCPUO
100184
100184
100184
100184
100184
100184
100184
100180
100180
100188
100184
100184
100184
100184
100184
100184

vCPU1
100184
100184
100184
100184
100188
100184
100184
100188
100188
100184
100184
100184
100184
100184
100188
100188

SUM

200368
200363
200368
200368
200372
200368
200368
200368
200368
200372
200368
200368
200363
200368
200372
200372

Hyper-threaded

vCPUO
200000
200083
210768
200096
200072
187312
204776
186996
200016
200088
200084
200076
200084
200240
204588
200000

vCPU1
200228
200084
193512
200084
200100
226556
205364
231952
200176
200084
200088
200096
200083
191980
205536
200204

SuUM

400228
400172
404280
400180
400172
413868
410140
418948
400192
400172
400172
400172
400172
392220
410124
400204

vCPUO
100184
100184
100184
100184
100184
100184
100184
100180
100180
100188
100184
100184
100184
100184
100184
100184

vCPU1 SUM
100184
100184
100184
100184
100188
100184
100184
100188
100188
100184
100184
100184
100184
100184
100188
100188

> VM #1

VM #2

200368
200363
200368
200368
200372
200368
200368
200368
200368
200372
200368
200368
200363
200368
200372
200372

VM#l Modulate a contention pattern
i1] o0 | O | o0 | 1
MUL | NOP | NOP | NOP | MUL

VM#l Modulate a contention pattern
i1] o0 | O | o0 | 1
MUL | NOP | NOP | NOP | MUL

VM#2 Detect BUS contention
Slow| Fast| Fast| Fast| Slow
1 | o | O | o | 1

Video #1

Overview

= Goal
— Practical implementation (not just some research stuff)

= How
— Abusing X86 shared resources
— Cache line encoding / decoding
— Getting around the HW pre-fetcher
— Data persistency and noise. What can be done?
— Guest to host page table de-obfuscation. The easy way
— High precision inter-VM synchronization: =»All about timers

= Detection / Mitigation

Shared resource: HT enabled

Pipeline contention
“previous example”

L1 modulation

VM #1 %J, l L2 mOijlation

VM #2 ¢ >

Shared resource: HT disabled

" #1<\>

VM #2< >

L3 modulation

http://it.slashdot.org/story/05/05/17/201253/hyper-threading-linus-torvalds-vs-colin-perciv

Shared resource: Multi socket

VM #1 @

d 'l g

VM#1l encode a pattern in cache line
cLo | CL1 | CL2 | CL3 | CL4
1 | 0o | 0 | 0 | 1
Load | Flush| Flush| Flush| Load

VM#1l encode a pattern in cache line
cLo | CL1 | CL2 | CL3 | CL4
1 | 0o | 0 | 0 | 1
Load | Flush| Flush| Flush| Load

VM#2 decode the cache line access time
CLO | CL1 | CL2 | CL3 | CL4
Fast| Slow | Slow | Slow | Fast
1 | 0 | 0 | 0 | 1

-___
= NOVM

= Simple Client / Server test
program

= Cache Line from shared
memory directly

= Mutex for inter-process
signaling

= Client encode a pattern

-___
= NOVM

= Simple Client / Server test
program

= Cache Line from shared
memory directly

= Mutex for inter-process
signaling

= Client encode a pattern
= Server decode

= =»Something weird?

-
« Simple test:
 Flush CLO -> CL100

« Measure CL access time
for CLO -> CL100

« =» Long latency for all CL

-
« Simple test:

* Flush CLO -> CL100

« Measure CL access time
for CLO -> CL100

« =» Long latency for all CL

« 777

-
« Simple test:

* Flush CLO -> CL100

« Measure CL access time
for CLO -> CL100

« =» Long latency for all CL

« 777

Prefetching in general means bringing data or instructions from memory into
the cache before they are needed

-
« Simple test:

* Flush CLO -> CL100

« Measure CL access time
for CLO -> CL100

« =» Long latency for all CL

« 777

Prefetching in general means bringing data or instructions from memory into
the cache before they are needed

The Core™ |7 processor and Xeon® 5500 series processors, for example,
have some prefetchers that bring data into the L1 cache and some that bring
data into the L2.

There are also different algorithms — some monitor data access patterns for a
particular cache and then try to predict what addresses will be needed in
the future.

-
« Simple test:

* Flush CLO -> CL100

« Measure CL access time
for CLO -> CL100

« =» Long latency for all CL

« 777

Prefetching in general means bringing data or instructions from memory into
the cache before they are needed

The Core™ |7 processor and Xeon® 5500 series processors, for example,
have some prefetchers that bring data into the L1 cache and some that bring
data into the L2.

There are also different algorithms — some monitor data access patterns for a
particular cache and then try to predict what addresses will be needed in
the future.

= Simple trick that
randomized CL access

= Simple trick that
randomized CL access

= CL access random within a
page

= Simple trick that
randomized CL access

= CL access random within a
page

= CL access random across
pages

= Simple trick that
randomized CL access

= CL access random within a
page

= CL access random across
pages

= This apparently manage to
confuse the HW prefetcher!

= What happen if we wait
longer before decoding?

= What happen if we wait
longer before decoding?

= Wait

= What happen if we wait
longer before decoding?

= Wait
= Wait

= What happen if we wait
longer before decoding?

= Wait
= Wait
= Wait

= What happen if we wait
longer before decoding?

= Wait
= Wait
= Wait

= Encoded data in the
cache evaporates pretty
quickly.

N
&
K
; >
& $
&)
Q \\é
8
&
N
I
&

@é@@é&b@"o\
<
@é@@é\?}é@e&
\\&&&0\
4*060&

= Clientin VM#1, Server in
VM#2

= Clientin VM#1, Server in
VM#2

= L2 OR L3 cache are

tagged by the physical
address but in a VM the
physical address that
you see has nothing to
do with the real physical
address on bare metal
that the cache is using.

o U
‘v

= Clientin VM#1, Server in
VM#2

= L2 OR L3 cache are

tagged by the physical
address but in a VM the
physical address that
you see has nothing to
do with the real physical
address on bare metal
that the cache is using.

= There is another layer of
translation

Virtualizing Virtual Mgmory
Shadow Page Tables
M1

Process 2

Process 1

= Clientin VM#1, Server in
VM#2

= L2 OR L3 cache are

tagged by the physical
address but in a VM the
physical address that
you see has nothing to
do with the real physical
address on bare metal
that the cache is using.

= There is another layer of
translation

This is a complex
problem to solve

Page de-duplication

KSM enables the kernel to examine two or more already running programs and compare
their memory. If any memory regions or pages are identical, KSM merge them into a
single page physical page on bare-metal host kernel.

Page de-duplication

KSM enables the kernel to examine two or more already running programs and compare
their memory. If any memory regions or pages are identical, KSM merge them into a

single page physical page on bare-metal host kernel.

If one of the programs wants to modify a shared page KSM kicks in and un-merge it.

Page de-duplication

KSM enables the kernel to examine two or more already running programs and compare
their memory. If any memory regions or pages are identical, KSM merge them into a
single page physical page on bare-metal host kernel.

If one of the programs wants to modify a shared page KSM kicks in and un-merge it.

This is useful for virtualization with KVM. Once the guest is running the contents of the
guest operating system image can be shared when guests are running the same
operating system or applications.

= Page table de-
obfuscation

= Page table de-
obfuscation

Z" The idea is to create a per-
page unique pattern in
memory that is the same
across client and server

= Page table de-
obfuscation

Z" The idea is to create a per-
page unique pattern in
memory that is the same
across client and server

= So that on host KSM
kicks in and do the page
de-duplication for us

= There is no
synchronization primitive

"?DD across processes
¢ running in different VM
?2??

= There is no
synchronization primitive

"?DD across processes
¢ running in different VM
?2??

= In reality there is
mechanism to do that (EX
ivshmem) but this is not
enabled in production env

= There is no
synchronization primitive

%3.‘) across processes
¢ running in different VM
?2??

= In reality there is
mechanism to do that (EX
ivshmem) but this is not
enabled in production env

"2y = We need something to
replace the mutex

-
Option #1

= Forget about the
synchronization aspect and
hope for the best

= With error correction we
can achieve some data
transmission.

= Very low bit rates

= CPU consumption is low

-
Option #2

= Busy loop on each side
= Client faster than Server

= At some point there will be
an overlap and the server
will pickup the signal

= CPU consumption is High
= OK bit rates

= We want <1% CPU usage
to remain undetected.

-
Option #3

= Define a common period
‘T,

= Client-Server lock into
phase

Option #3

= Define a common period
‘T,

= Client-Server lock into
phase

= Server sends a sync
7 pattern

Option #3

Define a common period
‘T,

Client-Server lock into
phase

Server sends a sync
pattern

Client sweep over the
period in search for the
sync

-
Option #3

= Once the sync is found the
phase is adjusted are we
are ready for transmission

-
Option #3

= Once the sync is found the
phase is adjusted are we
are ready for transmission

= For that to work we need a
monotonic pulse

-
Option #3

= Once the sync is found the
phase is adjusted are we
are ready for transmission.

= For that to work we need a
monotonic pulse

= Some jitter but not too
much (Lots of noise in
VMs = data evaporates
out of the cache very
quickly)

= How to achieve a
monotonic pulse?

= How to achieve a
monotonic pulse?

= Timers

= How to achieve a
monotonic pulse?

= Timers
= Why timers?

= We need to sleep = Avoid
detection (< 1% CPU
usage)

Frequency

= How to achieve a

Guest_latency

100000 e e monotonic pulse?
= Timers
10000 |
= Why timers?
e = We need to sleep = Avoid
| detection (< 1% CPU
0 ': usage)
10 |
1 10 100 1000 10000

Latency[usSec]

Frequency

100000

10000

1000

100

10

ency

10

100 1000
Latency[uSec]

10000

Freguency

100000

10000

1000

100

10

est_latency

= Jitter comes from both VM

10

100
Latency[uSec]

1000

10000

Frequency

100000

10000 |

1000

100

10

ency

10

100

Latency[uSec]

1000

10000

Freguency

100000

10000 |

1000 |

100

10

est_latency

= Jitter comes from both VM

= Too much jitter

10

100
Latency[uSec]

1000

10000

Frequency

100000

10000 |

1000

[
o
o

[
o

i

ency

[

10

100
Latency[uSec]

1000

10000

Freguency

100000

10000 |

1000 |

[
o
o

[
o

[

est_latency

= The idea here is to do
padding up to some value
above the maximum jitter

[

10

100
Latency[uSec]

1000

10000

= The idea here is to do
padding up to some value
above the maximum jitter

ency est_latency

100000 T T T 100000

10000 f 4 10000 F

1000 | 1000 |

Frequency

=

= o

P <] a

—

Frequency

=

= o

= a =]

[

10 100 1000 10000

[

1 10 100 1000 10000
Latency[uSec] Latency[uSec]

= The idea here is to do
padding up to some value
above the maximum jitter

= The problem here is that
the padding is subject to
noise

= |n other word more time
you spend trying to
immunize yourself to noise
more noise you end up
accumulating

est_latency

100000

100000

10000 | 1 10000
> 1000 B = 1000 |

o o
TS 100 | 1 L 100

10 | E 10 | ”

. N e) ! |

1 10 100 1000 10000 1 10 100 1000 10000

Latency[uSec] Latency[uSec]

= The idea here is to do
padding up to some value
above the maximum jitter

= The problem here is that
the padding is subject to
noise

= |n other word more time
you spend trying to
immunize yourself to noise
more noise you end up
accumulating

= Padding consume CPU

= By stretching the timer
period it's easy to stay
under 1% of CPU usage

100000

100000

10000 | 1 10000
> 1000 B = 1000 |

o o
TS 100 | 1 L 100

10 | E 10 | ”

. N e) ! |

1 10 100 1000 10000 1 10 100 1000 10000

Latency[uSec] Latency[uSec]

= |t's a tricky problem but at
the end | got it right!

= |t's a tricky problem but at
the end | got it right!

= |n short the padding is
using a calibrated software
loop that is kept in check
with the TSC

= |t's a tricky problem but at
the end | got it right!

= |n short the padding is
using a calibrated software
loop that is kept in check
with the TSC

= Assume 2.4Ghz machine;

= On aidle system:
~50 cycle = 20 nSec

= |t's a tricky problem but at
the end | got it right!

= |n short the padding is
using a calibrated software
loop that is kept in check
with the TSC

= Assume 2.4Ghz machine;

= On aidle system:
~50 cycle = 20 nSec

= On aloaded system
~300 cycle =120 nSec

= |t's a tricky problem but at
the end | got it right!

= |n short the padding is
using a calibrated software
loop that is kept in check
with the TSC

= Assume 2.4Ghz machine;

= On aidle system:
~50 cycle = 20 nSec

= On aloaded system
~300 cycle =120 nSec

Timers:
= 100uSec = 240 000 cycle

= 10uSec = 24 000 cycle (
best case)

Recap

= Encoding / decoding based on memory access time
— (1 =slow, 0 =fast)

Got rid of the HW prefetching (without disabling it from BIOS!)
— (randomized the access to cache lines / pages)

* Physical memory pages that are shared across VM

« Thanks to KSM ©

PLL and high precision inter-VM synchronization

« (Compensated timer <120 nSec jitter)

Time for a demo!

Video #2

Video #3

Mitigation
= Disable page-deduplication (KSM) / Per-VM policy
— No inter-VM shared read-only pages
— Flush ‘clflush’ and reload won’t work
— No OS / Application fingerprinting (de-duplication page-fault)
— Higher memory cost

= X86 ‘clflush’ instruction: Privilege?
— Microcode?

= Co-location policy (per-core / per-socket / per-box)

Detection

= Hardware counter
= Inter-VM scheduling “abnormality”

= TSC related “abnormality”

Thank you!

