
Abusing Adobe Reader’s
JavaScript APIs
Brian Gorenc, Manager, Vulnerability Research

AbdulAziz Hariri, Security Researcher

Jasiel Spelman, Security Researcher

Agenda
•  Introduction

•  Understanding the Attack Surface

•  Vulnerability Discovery

•  Constructing the Exploit

Introduction

Introduction

4

HP Zero Day Initiative

AbdulAziz Hariri - @abdhariri
Security Researcher at the Zero Day Initiative

Root cause analysis, vulnerability discovery, and exploit development

Jasiel Spelman - @WanderingGlitch
Security Researcher at the Zero Day Initiative

Root cause analysis, vulnerability discovery, and exploit development

Brian Gorenc - @maliciousinput
Head of Zero Day Initiative

Organizer of Pwn2Own Hacking Competitions

Research starting in December 2014
Bug Hunters

Patched Vulnerabilities
CVE-2015-5085, CVE-2015-5086, CVE-2015-5090,
CVE-2015-5091, CVE-2015-4438, CVE-2015-4447,
CVE-2015-4452, CVE-2015-5093, CVE-2015-5094,
CVE-2015-5095, CVE-2015-5101, CVE-2015-5102,
CVE-2015-5103, CVE-2015-5104, CVE-2015-5113,
CVE-2015-5114, CVE-2015-5115, CVE-2015-5100,
CVE-2015-5111, CVE-2015-4435, CVE-2015-4441,
CVE-2015-4445, CVE-2015-3053, CVE-2015-3055,
CVE-2015-3057, CVE-2015-3058, CVE-2015-3065,
CVE-2015-3066, CVE-2015-3067, CVE-2015-3068,
CVE-2015-3071, CVE-2015-3072, CVE-2015-3073,
CVE-2015-3054, CVE-2015-3056, CVE-2015-3061,
CVE-2015-3063, CVE-2015-3064, CVE-2015-3069,
CVE-2015-3060, CVE-2015-3062

Unpatched Vulnerabilities
ZDI-CAN-3051, ZDI-CAN-3050, ZDI-CAN-3049,
ZDI-CAN-3048, ZDI-CAN-3047, ZDI-CAN-3046,
ZDI-CAN-3043, ZDI-CAN-3036, ZDI-CAN-3022,
ZDI-CAN-3021, ZDI-CAN-2019, ZDI-CAN-3018,
ZDI-CAN-3017, ZDI-CAN-3016, ZDI-CAN-3015,
ZDI-CAN-2998, ZDI-CAN-2997, ZDI-CAN-2958,
ZDI-CAN-2816, ZDI-CAN-2892, ZDI-CAN-2893

…more to come.

5

Understanding the Attack Surface

Understanding Attack Surface

7

Prior research and resources

•  The life of an Adobe Reader JavaScript bug (CVE-2014-0521) - Gábor Molnár
•  First to highlight the JS API bypass issue
•  The bug was patched in APSB14-15 and was assigned CVE-2014-0521

•  According to Adobe, this could lead to information disclosure
•  https://molnarg.github.io/cve-2014-0521/#/

•  Why Bother Assessing Popular Software? – MWR Labs
•  Highlights various attack vectors on Adobe reader
•  https://labs.mwrinfosecurity.com/system/assets/979/original/Why_bother_assessing_popular_software.pdf

Understanding Attack Surface

8

ZDI Research Stats

•  Primary Adobe research started internally in December 2014

•  We were not getting many cases in Reader/Acrobat

•  Main goal was to kill as much bugs as possible

•  Internal discoveries varied in bug type
–  JavaScript API Restriction Bypasses

–  Memory Leaks
–  Use-After-Frees
–  Elevation of Privileges
–  etc.

Understanding Attack Surface

9

Insights Into Reader’s JavaScript API’s

•  Adobe Acrobat/Reader exposes a rich JS API

•  JavaScript API documentation is available on the Adobe website

•  A lot can be done through the JavaScript API (Forms, Annotations, Collaboration etc..)

•  Mitigations exist for the JavaScript APIs

•  Some API’s defined in the documentation are only available in Acrobat Pro/Acrobat standard

•  Basically JavaScript API’s are executed in two contexts:
–  Privileged Context – Only Trusted functions can call it (app.trustedFunction)
–  Non-Privileged Context

Understanding Attack Surface

10

Insights Into Reader’s JavaScript API’s

•  Privileged vs Non-Privileged contexts are defined in the JS API documentation:

•  A lot of API’s are privileged and cannot be executed from non-privileged contexts:

Understanding Attack Surface

11

Insights Into Reader’s JavaScript API’s

•  Privileged API’s warning example from a non-privileged context:

Understanding Attack Surface

12

Folder-Level Scripts

•  Scripts stored in the JavaScript folder inside the Acrobat/Reader folder

•  Used to implement functions for automation purposes

•  Contains Trusted functions that execute privileged API’s

•  By default Acrobat/Reader ships with JSByteCodeWin.bin

•  JSByteCodeWin.bin is loaded when Acrobat/Reader starts up

•  It’s loaded inside Root, and exposed to the Doc when a document is open

Understanding Attack Surface

13

Decompiling

•  JSByteCodeWin.bin is compiled into SpiderMoney 1.8 XDR bytecode

•  JSByteCodeWin.bin contains interesting Trusted functions

•  Molnarg was kind enough to publish a decompiler for SpiderMonkey
–  https://github.com/molnarg/dead0007
–  Usage: ./dead0007 JSByteCodeWin.bin > output.js
–  Output needs to be prettified

–  ~27,000 lines of Javascript

Vulnerability Discovery

Vulnerability Discovery

15

JavaScript Method/Property Overloading

•  __defineGetter__ and __defineSetter__

Vulnerability Discovery

16

JavaScript Method/Property Overloading

•  __proto__

Vulnerability Discovery

17

Code Auditing for Overloading Opportunities

•  Search for ‘eval’

Vulnerability Discovery

18

Code Auditing for Overloading Opportunities

•  Search for ‘app.beginPriv(“

Vulnerability Discovery

19

Achieving System-Level eval()

•  Overload property access with a custom function

Vulnerability Discovery

20

Executing Privileged APIs

•  Replace a property with a privileged function

Vulnerability Discovery

21

Vulnerability Chaining

•  Set up the system-level eval such that it executes the bulk of the payload

•  Create the replacement attribute such that it now calls a privileged API

•  Trigger the call

Vulnerability Discovery

22

Proof of Concept – CVE-2015-3073

Constructing the Exploit

Constructing the exploit

24

Overview

•  Research triggered from https://helpx.adobe.com/security/products/reader/apsb14-15.html:

•  Challenge: Gain Remote Code Execution through the bypass issue

•  We might be able to do that through the JS API’s that we know about

Constructing the exploit

25

Because documentation sucks..

•  We needed to find a way to dump a file on disk

•  The file can be of any type (try to avoid restrictions)

•  Let’s have a look at the Collab object…through the JS API from Adobe:

•  Through the console:

Constructing the exploit

26

“If you want to keep a secret, you must also hide it from yourself.” – G. Orwell

•  From all the 128 undocumented methods, the Collab.uri* family is specifically interesting:

Constructing the exploit

27

“The more you leave out, the more you highlight what you leave in.” - H. Green

•  Too good to be true, so I consulted uncle Google before digging more:

Constructing the exploit

28

Show me what you got...

•  Quick overview of the interesting methods:

Constructing the exploit

29

•  Overview of the Collab.uri* API’s:
–  The API’s are used for “Collaboration”
–  uriDeleteFolder/uriDeleteFile/uriPutData/uriCreateFolder are privileged API’s

–  uriEnumerateFiles is NOT privileged
–  The Collab.uri* methods take a URI path as an argument (at least)
–  The path expected should be a UNC path
–  The UNC path should start with smb:// or file://

•  The API’s fail to:
–  Sanitize the UNC path (smb://localhost/C$/XXX works)

–  Check the filetype of the filename to be written on disk (in the case of uriPutData)
–  Check the content of oData object to be dumped (in the case of uriPutData)

Constructing the exploit

30

•  What we have so far:
–  We can dump files on disk using the Collab.uriPutData() method
–  The file contents that we want to dump should be passed as the oData object

–  We can attach files in PDF documents and extract the contents
–  We should chain the uriPutData call with one of the bypasses that we discussed earlier

Then what ? How can we get RCE? Actually there are two obvious ways..

Constructing the exploit

31

Gaining RCE

•  First way…a la Vupen:

Basically write a file to the startup and wait for a logoff/logon !

•  Second way is writing a DLL that would be loaded by Adobe Acrobat:

Constructing the exploit

32

Putting it all together (Adobe Acrobat Pro)

1.  Attach our payload to the PDF

2.  Create a JS that would execute when the document is open

3.  JS is composed of:
1.  Extraction of the attachment
2.  Bypass JS privileges
3.  Execute Collab.uriPutData to output our payload (startup/dll)

Extract
Attachment

Bypass JS
Privileges

Call uriPutData
with the extracted

attachment
RCE

Constructing the exploit

33

Putting it all together (Adobe Acrobat Pro)

DEMO

Thank you

