
  

0x0000

i'm learning a lesson called patience.
can't wait 'til i have it all learned.

- “walk on water”



  

fun with symboliks

symbolik analysis in pure python



  

0x0001 – who am i?

● Jesus dude

● husband

● father

● hobby farmer

● biker



  

0x0002 – who am i?

● oh, and i'm atlas 0f d00m

● re

● vr

● hw

● fw

● radio

● cars/meddevs/SmartMeters/embedded

● Vivisect/envi/symboliks

● atlas@r4780y.com



  

0x0100 – symboliks - wtfo?

● part of Vivisect, invisigoth's binary analysis framework

● Symbolic Analysis

– based on threads of execution

● Symbolic Emulation

– granular control of symbolic analysis

● pure python



  

0x0200 – intro to Vivisect

● binary analysis framework

● pure python

● vdb debugger

● emulators

● gooey

● symboliks

● extensible

● scalpals

● interactive python

● scripting

● client/server model collaboration

● peer-to-peer model collaboration



  

0x0201 – intro to Vivisect

● binary analysis framework

● pure python

● vdb programmatic debugger

● emulators

● gooey

● symboliks

● extensible

● scalpals

● interactive python

● scripting

● client/server model collaboration

● peer-to-peer model collaboration



  

0x0210 – intro to Vivisect (2)

● analyzing and viewing workspace

$ vivbin -B stage3

Failed to find file for 0x0804a1a4 (__bss_start) (and filelocal == True!)

Failed to find file for 0x0804a1a4 (_edata) (and filelocal == True!)

Loaded (0.0296 sec) stage3

ANALYSIS TIME: 0.277778863907

stats: {'functions': 67, 'relocations': 0}

Saving workspace: stage3.viv

$ vivbin stage3.viv



  

0x0220 – viv/stage3

do you see the

vuln?



  

0x0230 – viv/stage3 vuln

● look again...



  

0x0210 – intro to Vivisect (2)

● pure python

$ ipython

In [1]: import vivisect.cli as vivcli

In [2]: vw = vivcli.VivCli()

In [3]: vw.loadFromFile('stage3')

Failed to find file for 0x0804a1a4 (__bss_start) (and filelocal == True!)

Failed to find file for 0x0804a1a4 (_edata) (and filelocal == True!)

Out[3]: 'stage3'

In [4]: vw.analyze()

In [5]: vw.saveWorkspace()



  

0x0300 – intro to Symboliks

● ENVI disassembler, emulator, symboliks

● drag 'symbolic info' through emulation of each opcode

● at each point, 'symbolic state' in terms of start of trace

● eg:  

push ebp
mov ebp, esp
   becomes:
esp = 0xbfbfeffc
[ 0xbfbfeffc : 4 ] = ebp
ebp = 0xbfbfeffc



  

0x0400 – intro to Graph Theory

● “Your graph just shit on my theory!”

● imagine code blocks as nodes in a directed graph

– connected by directed edges

● using traditional graph theory, paths (threads) of 
execution can be generated

– using symboliks, provably impossible paths are culled

● please hold for gratuitous visual ugliness



  

0x0410 – Graph Theory primer

● this is a simple function 

● look familiar?

● Pathing starts at some point in the 
graph, and follows edges in the 
proper direction

● much to this, but simple for now

– looping and the halting problem



  

0x0420 – Graph Theory

● what you can't see is the 
childrqst() handler from 
stage3

● in most cases, Viv's and 
IDA's graph view represent a 
code graph... but not always

– calls aren't followed

– conditional instructions

● ARM

– cmpxchg

– cmov*



  

0x0500 – basics of symboliks

● symbolik state tracking and expressions

– edi + 5
– Mem((esp-4)+0x1500, 4)

● simple symbolik effects

– ReadMemory( (esp-4)+0x1500, 4 )
– WriteMemory( (esp-4)+0x1500, 4, Var(ebx, 4) )
– SetVariable( eax, Const(4, 4) )

● symbolik constraints

– ConstrainPath( va, nextva, ne( Var('eax'), Const(4, 4), 4))



  

0x0510 – basics of symboliks (pretty)

● verbose (repr):

ConstrainPath( 0x08049867, Const(0x08049869,4), 
ne(Call(Const(0x08048d08,4),4, argsyms=[]),Const(0x00000000,4)) )

ConstrainPath( 0x08049888, Const(0x0804988a,4), 
ne(Call(Const(0x08048d08,4),4, argsyms=[]),Const(0x00000000,4)) )

● pretty (str)

if (0x08048d08() != 0)
if (0x08048d08() != 0)



  

0x0520 – basics of symboliks (pretty)

● verbose (repr):

 SetVariable(0x080498b3, 'eax', Const(0x00000001,4))
 SetVariable(0x080498b8, 'esp', o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4))
 SetVariable(0x080498b8, 'ebp', Var("ebp", width=4))
 SetVariable(0x080498b8, 'esp', 
o_add(o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4),Const(0x00000004,4),4))
 SetVariable(0x080498b9, 'eip', 
Mem(o_add(o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4),Const(0x00000004,4),4)
, Const(0x00000004,4)))
 SetVariable(0x080498b9, 'esp', 
o_add(o_add(o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4),Const(0x00000004,4),
4),Const(0x00000004,4),4))

● pretty (str)

 eax = 1
 esp = (0xbfbff000 - 4)
 ebp = ebp
 esp = ((0xbfbff000 - 4) + 4)
 eip = mem[((0xbfbff000 - 4) + 4):4]
 esp = (((0xbfbff000 - 4) + 4) + 4)



  

0x0530 – symbolik effects (simple/applied)

● simple effects:

 esp = (esp - 4)
 [ esp : 4 ] = ebp'
 ebp = esp'
 esp = (esp - 1064)'
 edx = (ebp - 1048)'
 eax = 1024'

● applied effects (run through SymbolikEmulator)

 esp = (esp - 4)
 [ (esp - 4) : 4 ] = ebp
 ebp = (esp - 4)
 esp = ((esp - 4) - 1064)
 edx = ((esp - 4) - 1048)
 eax = 1024



  

0x0540 – symboliks explained

● disassemble an opcode op = vw.parseOpcode( va )

● translate opcode into “Simple Effects”: xlater.translateOpcode(op)

● run simple effects through emu: apleffs = emu.applyEffects( xlater.getEffects() )

● apleffs now is a list of “Applied Effects”

● emu now has updated state for memory and symbolik variables that have been effected

● emu and apleffs are now both chocked full of data to be analyzed

● basically arch independent (except symbolik variable names)



  

0x0548 – symboliks explained

● python classes

– with children

● think RPN:  o_add( Var('ebx', 4), Const(15, 4), 4)

● random 4's are “width” data

● primitives: (subclasses of SymbolikBase)

– Const

– Var

– Mem

– Call

– Arg

– cnot

– Operator



  

0x0550 – symboliks explained

● Operator (added to symbolik state through python magic)

– o_add applied using SymbolikBase.__add__() and .__iadd__()

– o_sub ...

– o_xor

– o_and

– o_or

– o_mul

– o_div

– o_mod

– o_lshift

– o_rshift

– o_pow

– o_sextend



  

0x0560 – symboliks explained

● Effects – subclasses of SymbolikEffect

– SetVariable

– ReadMemory

– WriteMemory

– CallFunction

– ConstrainPath

● Constraints – subclasses of Constraint

– eq

– ne

– gt

– lt

– ge

– le

– UNK

– NOTUNK



  

0x0600 – deeper into symboliks

● reduce

● solve

● update

● substitution

● reducers



  

0x0610 – deeper symboliks (reduced)

● applied effects (run through SymbolikEmulator)

 esp = (esp - 4)
 [ (esp - 4) : 4 ] = ebp
 ebp = (esp - 4)
 esp = ((esp - 4) - 1064)
 edx = ((esp - 4) - 1048)
 eax = 1024

● reduced applied effects ( symstate.reduce() )

 esp = (esp - 4)
 [ (esp - 4) : 4 ] = ebp
 ebp = (esp - 4)
 esp = (esp - 1068)
 edx = (esp - 1052)
 eax = 1024



  

0x0620 – reduced deshmooshed.  so what!

● applied effects (run through SymbolikEmulator)

 [ (((((((((((((((((((((((((((((esp - 4) - 1064) - 4) - 1064) - 4) - 4) - 
4) - 4) + 16) - 12) - 4) + 16) - 4) - 4) - 4) - 4) + 16) - 4) - 4) - 4) - 
4) + 16) - 4) - 4) - 4) - 4) + 16) - 12) - 4) : 4 ] = ((((esp - 4) - 1064) 
- 4) – 1048)
 simple, right?

● reduced applied effects ( symstate.reduce() )

 [ (esp - 2152) : 4 ] = (esp - 2120)



  

0x0630 – solve

● symbolik expressions are either discrete or not

– symobj.isDiscrete()

● if discrete, symbolik expressions can be solved 
completely

– In [50]: o_add(Const(8,4), Const(15,4), 4).solve()

– Out[50]: 23

● if not discrete, symbolik expressions can be 
compared...  

– solve() walks through the expression tree and replaces 
each “unknown” object with some hash of it's repr()



  

0x0640 – solve

● eg: Var._solve()



  

0x0650 – update

● using certain emulator state and variable values

– get new updated symbolik state

– which can often reduce a lot easier to more actionable 
stuff



  

0x0660 – substitution

● many might consider this the “solve” function, where 
you can provide ranges and sets of inputs to a 
symbolik state

● vivisect.symboliks.substitution

– sset()

– srange()



  

0x0660 – substitution

● example: (from switchcase analysis)



  

0x0670 – reducers 



  

0x0680 – easter egg: archind

● library to make symbolik state more architecture 
independent

– useful for comparing functions

– comparing arch-independent symbolik state 

● inputs

● outputs

● more at some later date...



  

0x0700 – why do we care about this? nerd

● RE / VR ~= pattern matching

– but

● RE / VR != pattern matching...

● RE == Identifying Behavior

● VR == Behavior Hunting

● so, we're hunting fat juicy behaviors?

– EXACTLY



  

0x0710 – case study: rop gadgets

● ROP gadgets are specialized behaviors ending in a 
transfer of execution

● ROP gadgets often have unintended side effects

● Symboliks can be used to trace effects in order to 
identify behaviors

– eg. Register Traversal



  

0x0720 – Register 
Traversal ROP



  

0x0730 – more to think about



  

0x0740 – case study: switch case analysis

● how do we tell the computer to do what we do in our 
magical portable computer^H^H^H^H^H^H^H^Hbrain

– start at JMP REG

– backup just enough to figure out the index register and 
any base register (which points to start of module)

– now, backup to the start of function

● trace through to the JMP REG

● look through effects for constraints/o_sub to index register

– bounding the valid indexes for this switchcase component

● identify the symbolik state of REG (from JMP REG)

● use substitution to ratchet through valid indexes to see where 
each index jmps to

● wrack and stack



  

0x0750 – case study: 0-day

● wide wide wide wide array of options

– much opportunity for the enterprising young soul

● two primary appoaches to symbolic bug hunting:

– targeted

● more efficient

● more coding for more edge cases

– directed bruting

● less efficient

● easier to code the checks

● how might we identify the vuln from stage3?



  

0x0760 – case study: viv/stage3 vuln

● look again...



  

case study: 0-day

● call to read(arg0, 
input_buffer, 2047)

– limits our input to 2047

– input_buffer is big enuf

● call to sscanf(input_buffer, 
“bacon:%s\x00”, 
0xbfbfebcc)

● 0xbfbfebe4 is 1052 bytes 
from the top of the stack 
(RET)

● 1052 – 2047 = -995



  

case study: 0-day

● to take this approach, the following information is 
important:

– buffer tracking

– buffer and input/control limitations

– functions which help bound these intelligently

● at the end of the day, we're trying to teach the 
computer to do what we do intuitively 

● other approaches use more brutish efforts

● both are good, combined is better



  

0x-001 – for your playtime...

● import vivisect.cli as vivcli

● vw = vivcli.VivCli()

● vw.loadFromFile(“some_poor_bin.exe”)
● vw.verbose=1 ; vw.analyze()

or...

● vw.loadWorkspace(“some_poor_bin.exe.viv”)

● import vivisect.symboliks.analysis as vs_anal

● sctx = vs_anal.getSymbolikAnalysisContext(vw)

● graph = sctx.getSymbolikGraph(func_va)

● spaths = sctx.getSymbolikPaths(func_va)

● symemu, symeffs = spaths.next()

● symeffs # play around with this.  inspect!  learn!  play! WIN!



  

resources

● https://github.com/vivisect/vivisect

● https://github.com/atlas0fd00m/vivisect
atlas' fork, often includes extras not yet merged
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