

0x0000

i'm learning a lesson called patience.
can't wait 'til i have it all learned.

- “walk on water”

fun with symboliks

symbolik analysis in pure python

0x0001 – who am i?

● Jesus dude

● husband

● father

● hobby farmer

● biker

0x0002 – who am i?

● oh, and i'm atlas 0f d00m

● re

● vr

● hw

● fw

● radio

● cars/meddevs/SmartMeters/embedded

● Vivisect/envi/symboliks

● atlas@r4780y.com

0x0100 – symboliks - wtfo?

● part of Vivisect, invisigoth's binary analysis framework

● Symbolic Analysis

– based on threads of execution

● Symbolic Emulation

– granular control of symbolic analysis

● pure python

0x0200 – intro to Vivisect

● binary analysis framework

● pure python

● vdb debugger

● emulators

● gooey

● symboliks

● extensible

● scalpals

● interactive python

● scripting

● client/server model collaboration

● peer-to-peer model collaboration

0x0201 – intro to Vivisect

● binary analysis framework

● pure python

● vdb programmatic debugger

● emulators

● gooey

● symboliks

● extensible

● scalpals

● interactive python

● scripting

● client/server model collaboration

● peer-to-peer model collaboration

0x0210 – intro to Vivisect (2)

● analyzing and viewing workspace

$ vivbin -B stage3

Failed to find file for 0x0804a1a4 (__bss_start) (and filelocal == True!)

Failed to find file for 0x0804a1a4 (_edata) (and filelocal == True!)

Loaded (0.0296 sec) stage3

ANALYSIS TIME: 0.277778863907

stats: {'functions': 67, 'relocations': 0}

Saving workspace: stage3.viv

$ vivbin stage3.viv

0x0220 – viv/stage3

do you see the

vuln?

0x0230 – viv/stage3 vuln

● look again...

0x0210 – intro to Vivisect (2)

● pure python

$ ipython

In [1]: import vivisect.cli as vivcli

In [2]: vw = vivcli.VivCli()

In [3]: vw.loadFromFile('stage3')

Failed to find file for 0x0804a1a4 (__bss_start) (and filelocal == True!)

Failed to find file for 0x0804a1a4 (_edata) (and filelocal == True!)

Out[3]: 'stage3'

In [4]: vw.analyze()

In [5]: vw.saveWorkspace()

0x0300 – intro to Symboliks

● ENVI disassembler, emulator, symboliks

● drag 'symbolic info' through emulation of each opcode

● at each point, 'symbolic state' in terms of start of trace

● eg:

push ebp
mov ebp, esp
 becomes:
esp = 0xbfbfeffc
[0xbfbfeffc : 4] = ebp
ebp = 0xbfbfeffc

0x0400 – intro to Graph Theory

● “Your graph just shit on my theory!”

● imagine code blocks as nodes in a directed graph

– connected by directed edges

● using traditional graph theory, paths (threads) of
execution can be generated

– using symboliks, provably impossible paths are culled

● please hold for gratuitous visual ugliness

0x0410 – Graph Theory primer

● this is a simple function

● look familiar?

● Pathing starts at some point in the
graph, and follows edges in the
proper direction

● much to this, but simple for now

– looping and the halting problem

0x0420 – Graph Theory

● what you can't see is the
childrqst() handler from
stage3

● in most cases, Viv's and
IDA's graph view represent a
code graph... but not always

– calls aren't followed

– conditional instructions

● ARM

– cmpxchg

– cmov*

0x0500 – basics of symboliks

● symbolik state tracking and expressions

– edi + 5
– Mem((esp-4)+0x1500, 4)

● simple symbolik effects

– ReadMemory((esp-4)+0x1500, 4)
– WriteMemory((esp-4)+0x1500, 4, Var(ebx, 4))
– SetVariable(eax, Const(4, 4))

● symbolik constraints

– ConstrainPath(va, nextva, ne(Var('eax'), Const(4, 4), 4))

0x0510 – basics of symboliks (pretty)

● verbose (repr):

ConstrainPath(0x08049867, Const(0x08049869,4),
ne(Call(Const(0x08048d08,4),4, argsyms=[]),Const(0x00000000,4)))

ConstrainPath(0x08049888, Const(0x0804988a,4),
ne(Call(Const(0x08048d08,4),4, argsyms=[]),Const(0x00000000,4)))

● pretty (str)

if (0x08048d08() != 0)
if (0x08048d08() != 0)

0x0520 – basics of symboliks (pretty)

● verbose (repr):

 SetVariable(0x080498b3, 'eax', Const(0x00000001,4))
 SetVariable(0x080498b8, 'esp', o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4))
 SetVariable(0x080498b8, 'ebp', Var("ebp", width=4))
 SetVariable(0x080498b8, 'esp',
o_add(o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4),Const(0x00000004,4),4))
 SetVariable(0x080498b9, 'eip',
Mem(o_add(o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4),Const(0x00000004,4),4)
, Const(0x00000004,4)))
 SetVariable(0x080498b9, 'esp',
o_add(o_add(o_sub(Const(0xbfbff000,4),Const(0x00000004,4),4),Const(0x00000004,4),
4),Const(0x00000004,4),4))

● pretty (str)

 eax = 1
 esp = (0xbfbff000 - 4)
 ebp = ebp
 esp = ((0xbfbff000 - 4) + 4)
 eip = mem[((0xbfbff000 - 4) + 4):4]
 esp = (((0xbfbff000 - 4) + 4) + 4)

0x0530 – symbolik effects (simple/applied)

● simple effects:

 esp = (esp - 4)
 [esp : 4] = ebp'
 ebp = esp'
 esp = (esp - 1064)'
 edx = (ebp - 1048)'
 eax = 1024'

● applied effects (run through SymbolikEmulator)

 esp = (esp - 4)
 [(esp - 4) : 4] = ebp
 ebp = (esp - 4)
 esp = ((esp - 4) - 1064)
 edx = ((esp - 4) - 1048)
 eax = 1024

0x0540 – symboliks explained

● disassemble an opcode op = vw.parseOpcode(va)

● translate opcode into “Simple Effects”: xlater.translateOpcode(op)

● run simple effects through emu: apleffs = emu.applyEffects(xlater.getEffects())

● apleffs now is a list of “Applied Effects”

● emu now has updated state for memory and symbolik variables that have been effected

● emu and apleffs are now both chocked full of data to be analyzed

● basically arch independent (except symbolik variable names)

0x0548 – symboliks explained

● python classes

– with children

● think RPN: o_add(Var('ebx', 4), Const(15, 4), 4)

● random 4's are “width” data

● primitives: (subclasses of SymbolikBase)

– Const

– Var

– Mem

– Call

– Arg

– cnot

– Operator

0x0550 – symboliks explained

● Operator (added to symbolik state through python magic)

– o_add applied using SymbolikBase.__add__() and .__iadd__()

– o_sub ...

– o_xor

– o_and

– o_or

– o_mul

– o_div

– o_mod

– o_lshift

– o_rshift

– o_pow

– o_sextend

0x0560 – symboliks explained

● Effects – subclasses of SymbolikEffect

– SetVariable

– ReadMemory

– WriteMemory

– CallFunction

– ConstrainPath

● Constraints – subclasses of Constraint

– eq

– ne

– gt

– lt

– ge

– le

– UNK

– NOTUNK

0x0600 – deeper into symboliks

● reduce

● solve

● update

● substitution

● reducers

0x0610 – deeper symboliks (reduced)

● applied effects (run through SymbolikEmulator)

 esp = (esp - 4)
 [(esp - 4) : 4] = ebp
 ebp = (esp - 4)
 esp = ((esp - 4) - 1064)
 edx = ((esp - 4) - 1048)
 eax = 1024

● reduced applied effects (symstate.reduce())

 esp = (esp - 4)
 [(esp - 4) : 4] = ebp
 ebp = (esp - 4)
 esp = (esp - 1068)
 edx = (esp - 1052)
 eax = 1024

0x0620 – reduced deshmooshed. so what!

● applied effects (run through SymbolikEmulator)

 [(((((((((((((((((((((((((((((esp - 4) - 1064) - 4) - 1064) - 4) - 4) -
4) - 4) + 16) - 12) - 4) + 16) - 4) - 4) - 4) - 4) + 16) - 4) - 4) - 4) -
4) + 16) - 4) - 4) - 4) - 4) + 16) - 12) - 4) : 4] = ((((esp - 4) - 1064)
- 4) – 1048)
 simple, right?

● reduced applied effects (symstate.reduce())

 [(esp - 2152) : 4] = (esp - 2120)

0x0630 – solve

● symbolik expressions are either discrete or not

– symobj.isDiscrete()

● if discrete, symbolik expressions can be solved
completely

– In [50]: o_add(Const(8,4), Const(15,4), 4).solve()

– Out[50]: 23

● if not discrete, symbolik expressions can be
compared...

– solve() walks through the expression tree and replaces
each “unknown” object with some hash of it's repr()

0x0640 – solve

● eg: Var._solve()

0x0650 – update

● using certain emulator state and variable values

– get new updated symbolik state

– which can often reduce a lot easier to more actionable
stuff

0x0660 – substitution

● many might consider this the “solve” function, where
you can provide ranges and sets of inputs to a
symbolik state

● vivisect.symboliks.substitution

– sset()

– srange()

0x0660 – substitution

● example: (from switchcase analysis)

0x0670 – reducers

0x0680 – easter egg: archind

● library to make symbolik state more architecture
independent

– useful for comparing functions

– comparing arch-independent symbolik state

● inputs

● outputs

● more at some later date...

0x0700 – why do we care about this? nerd

● RE / VR ~= pattern matching

– but

● RE / VR != pattern matching...

● RE == Identifying Behavior

● VR == Behavior Hunting

● so, we're hunting fat juicy behaviors?

– EXACTLY

0x0710 – case study: rop gadgets

● ROP gadgets are specialized behaviors ending in a
transfer of execution

● ROP gadgets often have unintended side effects

● Symboliks can be used to trace effects in order to
identify behaviors

– eg. Register Traversal

0x0720 – Register
Traversal ROP

0x0730 – more to think about

0x0740 – case study: switch case analysis

● how do we tell the computer to do what we do in our
magical portable computer^H^H^H^H^H^H^H^Hbrain

– start at JMP REG

– backup just enough to figure out the index register and
any base register (which points to start of module)

– now, backup to the start of function

● trace through to the JMP REG

● look through effects for constraints/o_sub to index register

– bounding the valid indexes for this switchcase component

● identify the symbolik state of REG (from JMP REG)

● use substitution to ratchet through valid indexes to see where
each index jmps to

● wrack and stack

0x0750 – case study: 0-day

● wide wide wide wide array of options

– much opportunity for the enterprising young soul

● two primary appoaches to symbolic bug hunting:

– targeted

● more efficient

● more coding for more edge cases

– directed bruting

● less efficient

● easier to code the checks

● how might we identify the vuln from stage3?

0x0760 – case study: viv/stage3 vuln

● look again...

case study: 0-day

● call to read(arg0,
input_buffer, 2047)

– limits our input to 2047

– input_buffer is big enuf

● call to sscanf(input_buffer,
“bacon:%s\x00”,
0xbfbfebcc)

● 0xbfbfebe4 is 1052 bytes
from the top of the stack
(RET)

● 1052 – 2047 = -995

case study: 0-day

● to take this approach, the following information is
important:

– buffer tracking

– buffer and input/control limitations

– functions which help bound these intelligently

● at the end of the day, we're trying to teach the
computer to do what we do intuitively

● other approaches use more brutish efforts

● both are good, combined is better

0x-001 – for your playtime...

● import vivisect.cli as vivcli

● vw = vivcli.VivCli()

● vw.loadFromFile(“some_poor_bin.exe”)
● vw.verbose=1 ; vw.analyze()

or...

● vw.loadWorkspace(“some_poor_bin.exe.viv”)

● import vivisect.symboliks.analysis as vs_anal

● sctx = vs_anal.getSymbolikAnalysisContext(vw)

● graph = sctx.getSymbolikGraph(func_va)

● spaths = sctx.getSymbolikPaths(func_va)

● symemu, symeffs = spaths.next()

● symeffs # play around with this. inspect! learn! play! WIN!

resources

● https://github.com/vivisect/vivisect

● https://github.com/atlas0fd00m/vivisect
atlas' fork, often includes extras not yet merged

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

